Power Electronics / Power Management


Maintaining battery backup systems

28 September 2022 Power Electronics / Power Management

Standby battery backup systems play a critical role in keeping essential operations functional in the event of a utility outage. Facilities like data centres, hospitals, airports, utilities, oil and gas facilities, and railways cannot operate without 100% backup power reliability. Even standard commercial and manufacturing facilities have backup power systems for their emergency systems, alarms and controls, emergency lighting, steam and fire control systems.

Most backup power systems use an uninterruptable power supply (UPS) and a string of batteries. The UPS backs up the digital control system to keep control of plant operations until systems can be safely shut down or until the auxiliary generator starts to supply power.

Although most batteries used in modern UPS systems are “maintenance free”, they are still susceptible to deterioration from corrosion, internal shorts, sulphation, dry-out, and seal failure. Best practices can be outlined for assessing whether battery banks are maintaining optimum performance, to ensure that the backup is ready if an outage occurs.

The top two indicators of battery health are internal battery resistance and discharge testing.

Internal resistance is a life-span test, not a capacity test. Battery resistance stays relatively flat up until the end of life draws near. At that point, internal resistance increases and battery capacity decreases. Measuring and tracking this value helps identify when a battery needs replacing.

A specialised battery tester designed to measure battery resistance is necessary for this measurement while the battery is in service. Either the voltage drop on the load current (conductance) or the AC impedance will indicate the battery’s internal resistance. However, a single ohmic measurement is of little value without context. Best practice requires measuring ohmic values over months and years, each time comparing them to previous values on record to create a base line.

Discharge testing is the ultimate way to discover the true available capacity of a battery but can be complicated to perform. In discharge testing, a battery is connected to a load and discharged over a specified period. During this test period, current is regulated, and a constant known current is drawn while voltage is measured periodically. Details of the discharge current, the specified period for discharge testing, and the capacity of the battery in ampere-hours can be calculated and compared to the manufacturers’ specification. For example, a 12 V 100 Ah battery may require a discharge current of 12 A for an eight-hour period. A 12 V battery would be discharged when the terminal voltage is 10,5 V.

Batteries cannot support critical loads during and immediately after a discharge test and all critical loads should be transferred to a different battery bank until well after the test is completed. In addition, before conducting the test, a cooling system to compensate for a rise in ambient temperature should be prepared as large batteries release a significant amount of energy when discharging.

A Fluke 500 Series Battery Analyser is able to provide a new level of ease-of-use in battery testing and is the ideal tool for maintenance, troubleshooting and performance testing of individual stationary batteries and battery banks used in critical back-up applications.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

3-terminal filters for automotive applications
RS South Africa Power Electronics / Power Management
TDK has expanded its YFF series of 3-terminal filters for automotive applications to include higher voltages up to 35 V and higher capacitances up to 4,7 µF.

Read more...
Simple battery charger ICs for any chemistry
Altron Arrow Editor's Choice Power Electronics / Power Management
The LTC4162 is a highly integrated, high voltage multi-chemistry synchronous monolithic step-down battery charger and PowerPath manager with onboard telemetry functions and optional maximum power point tracking.

Read more...
Why your PoE budget could make or break your next installation
Power Electronics / Power Management
In South Africa’s often unpredictable networking environments, understanding and planning your PoE budget is essential for system reliability, customer satisfaction, and long-term scalability.

Read more...
Five-minute EV charging a reality
Power Electronics / Power Management
Successfully demonstrated in Beijing recently at the Shanghai auto show, BYD claimed to add 400 km of range in just five minutes of charging.

Read more...
The evolution of power management in electronics
TRX Electronics Power Electronics / Power Management
The Mibbo MPS Series metal-encased power supplies deliver solid, efficient power in a durable package that’s built to last.

Read more...
Power and precision in a compact package
Conical Technologies Power Electronics / Power Management
The Mibbo MPS Series metal-encased power supplies deliver solid, efficient power in a durable package that’s built to last.

Read more...
Robust PoE module
CST Electronics Power Electronics / Power Management
The Ag59800-LPB high power, IEEE 802.3bt compliant, PD module from Silvertel offers typical efficiency of 95% making it an ideal choice for higher power, space-constrained applications.

Read more...
Cutting-edge solutions for Africa’s clean energy future
Power Electronics / Power Management
As Africa pushes towards reliable, affordable, and sustainable energy, Sungrow is driving transformation with cutting-edge innovations that enhance grid stability, reduce energy costs, and expand access to clean power.

Read more...
Transformer protection is a critical safeguard for municipal power stability
Power Electronics / Power Management
Transformer protection is not just a technical requirement; it is a vital component in ensuring the resilience and operational integrity of South Africa’s municipal power infrastructure.

Read more...
Reliable power solution
Conical Technologies Power Electronics / Power Management
The Mibbo MLD-120W-xxVx is a robust DIN-rail mounted DC-DC converter with a 120 W output capacity specifically designed for industrial and automation applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved