Telecoms, Datacoms, Wireless, IoT


VSWR, return loss and transmission loss vs transmission power

28 September 2022 Telecoms, Datacoms, Wireless, IoT

In an ideal RF system, all the energy from the RF source is transferred to the load. An example of this would be a transmitter delivering a signal to an antenna with the interconnect between the two signal chain components operating at 100% efficiency. However, this does not happen, and factors like impedance mismatch and losses need to be considered. There are a few well established methods of discussing these imperfections and ways to include this in a system design. This article strives to be a brief primer on this topic.

RF energy in a signal chain

An RF signal chain is merely a system of connected RF components and devices in which a signal flows from a source to a load. This could be a transmitter signal chain, receiver signal chain, or really any RF system.

Leaning on the Law of Conservation of Energy, all the signal energy injected into a signal chain needs to go somewhere. Generally, every node of a signal chain exhibits loss and mismatch. As the signal energy from a source passes through signal chain components, devices, and interconnect, some of the signal energy is transferred through, some is reflected back, and some is absorbed within the signal chain elements.

Insertion loss/transmission loss

The insertion loss of a signal chain element is simply the amount of signal energy that is absorbed or otherwise extracted from the signal chain by that element. Hence, the ratio of the incident (forward/incoming) power to the transmitted (through) power is the insertion loss. This ratio is usually given as a logarithmic quantity in terms of power (in decibels), but can also be measured in terms of voltage, which is less common.

Return loss

The return loss from a signal chain element is the amount of signal energy reflected from the incident node of that element compared to the total incident energy. The reflection loss differs from insertion loss because the return loss signal energy isn’t being lost within the signal chain element, but rather, is reflected back into the signal chain opposite the incident node. Like insertion loss, return loss is also generally described in decibels of power.

VSWR

Voltage standing wave ratio (VSWR), often referred to as standing wave ratio (SWR), is the ratio between the transmitted and reflected voltage standing waves at a signal chain element incident node. VSWR is most often described as a function of the reflection coefficient at the input of a signal chain element. Due to this, the VSWR is also a measure of how efficiently RF energy is transferred from a source to a load. An ideal system with perfect match (no reflection) would result in a VSWR of 1:1. However, real systems always have some degree of mismatch, making the VSWR larger than 1:1, and the higher the ratio the worse the match.

VSWR can be expressed in terms of the forward and reflected wave voltages and can therefore be calculated as:

With these voltages indicated in the following graph.

Therefore, using the reflection coefficient, VSWR is:

Where Γ, the reflection coefficient, is defined as the ratio of the reflected voltage vector to the forward voltage.

For more information contact Andrew Hutton, RF Design, +27 21 555 8400, [email protected], www.rfdesign.co.za





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Wi-Fi 6 and Bluetooth LE co-processor
Altron Arrow Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has released its ST67W611M1, a low-power Wi-Fi 6 and Bluetooth LE combo co-processor module.

Read more...
Improving accuracy of outdoor devices
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
In a real-world environment, accessing a direct satellite signal is not always possible, and it cannot be relied upon as the only solution to provide a device with accurate location at all times.

Read more...
New 3dB hybrid couplers
Electrocomp Telecoms, Datacoms, Wireless, IoT
Designed to facilitate the continued evolution of high-frequency wireless systems in various market segments, the new DB0402 3dB 90° hybrid couplers provide repeatable high-frequency performance compatible with automated assembly.

Read more...
Next-level Software Defined Radio
IOT Electronics Telecoms, Datacoms, Wireless, IoT
Great Scott Gadgets has announced the HackRF Pro, a powerful evolution of its popular Software Defined Radio (SDR) platform designed for engineers and enthusiasts.

Read more...
High-performance Zigbee and BLE module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The KCMA32S from Quectel boasts an ARM Cortex-M33 processor with a frequency of up to 80 MHz, and supports Zigbee 3.0, BLE 5.3 and BLE mesh.

Read more...
Championing local PCB manufacturing
Master Circuits Telecoms, Datacoms, Wireless, IoT
Master Circuits, founded in 1994 by Peter Frankish in Durban, was born from the vision to meet the growing local demand for quick-turnaround printed circuit boards in South Africa.

Read more...
How IoT-driven smart data helps businesses stay ahead
Trinity IoT Telecoms, Datacoms, Wireless, IoT
With around 19 billion IoT devices globally, embedded in everything from machinery to vehicles to consumer products, reliable data is plentiful.

Read more...
IoT-optimised LTE Cat 1 bis module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s EG915K-EU is an LTE Cat 1 bis wireless communication module specially designed for M2M and IoT applications.

Read more...
Chip provides concurrent dual connectivity
EBV Electrolink Telecoms, Datacoms, Wireless, IoT
The IW693 from NXP is a 2x2 dual-band, highly integrated device that provides concurrent dual Wi-Fi 6E + Wi-Fi 6 and Bluetooth connectivity, supporting four different modes.

Read more...
The 6 GHz band radio solution
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Analog Devices’ 16 nm transceiver family offers a highly integrated solution for this new frequency band, featuring low power consumption and high performance.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved