Telecoms, Datacoms, Wireless, IoT


VSWR, return loss and transmission loss vs transmission power

28 September 2022 Telecoms, Datacoms, Wireless, IoT

In an ideal RF system, all the energy from the RF source is transferred to the load. An example of this would be a transmitter delivering a signal to an antenna with the interconnect between the two signal chain components operating at 100% efficiency. However, this does not happen, and factors like impedance mismatch and losses need to be considered. There are a few well established methods of discussing these imperfections and ways to include this in a system design. This article strives to be a brief primer on this topic.

RF energy in a signal chain

An RF signal chain is merely a system of connected RF components and devices in which a signal flows from a source to a load. This could be a transmitter signal chain, receiver signal chain, or really any RF system.

Leaning on the Law of Conservation of Energy, all the signal energy injected into a signal chain needs to go somewhere. Generally, every node of a signal chain exhibits loss and mismatch. As the signal energy from a source passes through signal chain components, devices, and interconnect, some of the signal energy is transferred through, some is reflected back, and some is absorbed within the signal chain elements.

Insertion loss/transmission loss

The insertion loss of a signal chain element is simply the amount of signal energy that is absorbed or otherwise extracted from the signal chain by that element. Hence, the ratio of the incident (forward/incoming) power to the transmitted (through) power is the insertion loss. This ratio is usually given as a logarithmic quantity in terms of power (in decibels), but can also be measured in terms of voltage, which is less common.

Return loss

The return loss from a signal chain element is the amount of signal energy reflected from the incident node of that element compared to the total incident energy. The reflection loss differs from insertion loss because the return loss signal energy isn’t being lost within the signal chain element, but rather, is reflected back into the signal chain opposite the incident node. Like insertion loss, return loss is also generally described in decibels of power.

VSWR

Voltage standing wave ratio (VSWR), often referred to as standing wave ratio (SWR), is the ratio between the transmitted and reflected voltage standing waves at a signal chain element incident node. VSWR is most often described as a function of the reflection coefficient at the input of a signal chain element. Due to this, the VSWR is also a measure of how efficiently RF energy is transferred from a source to a load. An ideal system with perfect match (no reflection) would result in a VSWR of 1:1. However, real systems always have some degree of mismatch, making the VSWR larger than 1:1, and the higher the ratio the worse the match.

VSWR can be expressed in terms of the forward and reflected wave voltages and can therefore be calculated as:

With these voltages indicated in the following graph.

Therefore, using the reflection coefficient, VSWR is:

Where Γ, the reflection coefficient, is defined as the ratio of the reflected voltage vector to the forward voltage.

For more information contact Andrew Hutton, RF Design, +27 21 555 8400, [email protected], www.rfdesign.co.za





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Quectel increases its IoT antenna range
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel has expanded its IoT antenna portfolio with six new 4G and 5G antennas that cover a wide range of use cases.

Read more...
Webinar: Game-changing Matter standard
EBV Electrolink Telecoms, Datacoms, Wireless, IoT
Join Infineon for an exclusive one-hour webinar with EBV Elektronik, exploring the groundbreaking Matter standard, and its profound implications for the future of smart homes.

Read more...
Wi-Fi 6/BLE module enables rapid development
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Telit Cinterion has announced the WE310K6, a fully integrated, low-power module featuring dual-band, dual-stream Wi-Fi 6, and dual-mode Bluetooth/BLE.

Read more...
Low phase noise amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The MAAL-011158 from Macom is an easy-to-use low-phase noise amplifier that provides 12 dB of gain in a 32-lead QFN plastic package.

Read more...
Webinar: Enabling the digital transformation of IIoT with Bluetooth
Telecoms, Datacoms, Wireless, IoT
Key industrial use cases for Bluetooth will be reviewed, including the main performance requirements for Bluetooth in industrial applications, and the technical features available.

Read more...
Full sensor to cloud solution
CST Electronics Telecoms, Datacoms, Wireless, IoT
NeoCortec has demonstrated the seamless and rapid development of full sensor-to-cloud solutions using NeoMesh Click boards from MikroE and the IoTConnect cloud solution from Avnet.

Read more...
Long-range Wi-Fi HaLow module
TRX Electronics Telecoms, Datacoms, Wireless, IoT
One of Mouser’s newest products is the Morse Micro MM6108-MF08651-US Wi-Fi HaLow Module, which adheres to the IEEE 802.11ah standard.

Read more...
Quectel launches 3GPP NTN comms module
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced the Quectel BG95-S5 3GPP non-terrestrial network (NTN) satellite communication module.

Read more...
SIMCom’s A7673x series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently released the A7673X series, a Cat.1 bis module based on the ASR1606 chipset, that supports wireless communication modes of LTE-FDD, with a maximum downlink rate of 10 Mbps and a maximum uplink rate of 5 Mbps.

Read more...
Accelerating the commercialisation of the 5G IoT markets
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
Fibocom unveils Non-Terrestrial Networks (NTN) module MA510-GL, enabling satellite and cellular connectivity to IoT applications.

Read more...