Telecoms, Datacoms, Wireless, IoT


VSWR, return loss and transmission loss vs transmission power

28 September 2022 Telecoms, Datacoms, Wireless, IoT

In an ideal RF system, all the energy from the RF source is transferred to the load. An example of this would be a transmitter delivering a signal to an antenna with the interconnect between the two signal chain components operating at 100% efficiency. However, this does not happen, and factors like impedance mismatch and losses need to be considered. There are a few well established methods of discussing these imperfections and ways to include this in a system design. This article strives to be a brief primer on this topic.

RF energy in a signal chain

An RF signal chain is merely a system of connected RF components and devices in which a signal flows from a source to a load. This could be a transmitter signal chain, receiver signal chain, or really any RF system.

Leaning on the Law of Conservation of Energy, all the signal energy injected into a signal chain needs to go somewhere. Generally, every node of a signal chain exhibits loss and mismatch. As the signal energy from a source passes through signal chain components, devices, and interconnect, some of the signal energy is transferred through, some is reflected back, and some is absorbed within the signal chain elements.

Insertion loss/transmission loss

The insertion loss of a signal chain element is simply the amount of signal energy that is absorbed or otherwise extracted from the signal chain by that element. Hence, the ratio of the incident (forward/incoming) power to the transmitted (through) power is the insertion loss. This ratio is usually given as a logarithmic quantity in terms of power (in decibels), but can also be measured in terms of voltage, which is less common.

Return loss

The return loss from a signal chain element is the amount of signal energy reflected from the incident node of that element compared to the total incident energy. The reflection loss differs from insertion loss because the return loss signal energy isn’t being lost within the signal chain element, but rather, is reflected back into the signal chain opposite the incident node. Like insertion loss, return loss is also generally described in decibels of power.

VSWR

Voltage standing wave ratio (VSWR), often referred to as standing wave ratio (SWR), is the ratio between the transmitted and reflected voltage standing waves at a signal chain element incident node. VSWR is most often described as a function of the reflection coefficient at the input of a signal chain element. Due to this, the VSWR is also a measure of how efficiently RF energy is transferred from a source to a load. An ideal system with perfect match (no reflection) would result in a VSWR of 1:1. However, real systems always have some degree of mismatch, making the VSWR larger than 1:1, and the higher the ratio the worse the match.

VSWR can be expressed in terms of the forward and reflected wave voltages and can therefore be calculated as:

With these voltages indicated in the following graph.

Therefore, using the reflection coefficient, VSWR is:

Where Γ, the reflection coefficient, is defined as the ratio of the reflected voltage vector to the forward voltage.

For more information contact Andrew Hutton, RF Design, +27 21 555 8400, [email protected], www.rfdesign.co.za





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Quectel partners with GEODNET
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has partnered with GEODNET to deliver Quectel’s Real-Time Kinematic (RTK) correction services, enabling high-precision positioning for IoT applications.

Read more...
Bringing Bluetooth Channel Sounding to automotive and beyond with KW47
Altron Arrow Telecoms, Datacoms, Wireless, IoT
NXP’s new Channel Sounding-certified KW47 and MCX W72 wireless MCUs are set to help automakers with distance measurement, bringing an additional ranging solution for car access and autonomous systems, and will be utilised across a broader spectrum of applications.

Read more...
Dual-band GNSS antenna
RF Design Telecoms, Datacoms, Wireless, IoT
The Taoglas Accura GVLB258.A, is a passive, dual-band GNSS L1/L5, high-performance antenna for high precision GNSS accuracy and fast positioning.

Read more...
What is Wi-Fi HaLow and why choose it for IoT?
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
Wi-Fi HaLow introduces a low power connectivity option that, in contrast to other Wi-Fi options, offers greater range of approximately 1 km, which opens up a raft of IoT use cases.

Read more...
Wi-Fi 6 and Bluetooth LE coprocessor module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The ST67W611M1 from STMicroelectronics boasts an all-in-one design which, together with its capabilities, contribute to making it an attractive choice for IoT edge devices requiring a single-chip solution.

Read more...
Futureproofing IoT connectivity
SIMcontrol Telecoms, Datacoms, Wireless, IoT
A managed private APN assigns every device to an isolated carrier slice, producing a single ingress to the enterprise network, with traffic bypassing shared internet paths and reducing exposure.

Read more...
Extra slim 2,4 GHz radio module
Telecoms, Datacoms, Wireless, IoT
The Thyone I radio module from Würth Elektronik now has a little sibling: Thyone-e, which takes up 30% less space and represents a cost-effective alternative for applications in which the long-range mode is not required.

Read more...
Wi-Fi 6 plus Bluetooth LE SoC
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Silicon Labs’ SiWx917M SoC is the company’s lowest power Wi-Fi 6 SoC, ideal for ultra-low power IoT wireless devices using Wi-Fi, Bluetooth, Matter, and IP networking for secure cloud connectivity.

Read more...
Two Bluetooth protocols – one module
Telecoms, Datacoms, Wireless, IoT
Würth Elektronik has introduced its Skoll-I, a compact wireless module that combines both Bluetooth Classic and Bluetooth Low Energy version 5.4 into a single solution.

Read more...
Compact high-performance antennas
Electrocomp Telecoms, Datacoms, Wireless, IoT
KYOCERA AVX offers a variety of extremely compact and high-performance internal, on-board, multiprotocol 2,4 GHz antennas ideal for use in SiP applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved