Analogue, Mixed Signal, LSI


Reference design for Raspberry Pi analogue I/O

26 July 2023 Analogue, Mixed Signal, LSI

While the world continues to become more digital where compute power and digital functionality are more critical, the need to measure the environment and interact with real-world devices remains an analogue function. To operate at the boundary of digital and analogue domains, processors must include mixed-signal inputs/outputs and accommodate more software-programmable ranges to be considered for many industrial, instrumentation, and automation applications.

Analogue Devices has published a reference design for a flexible, multichannel mixed-signal analogue I/O module. The 16 single-ended analogue outputs are software configurable, with ranges of 0 V to 5 V, ±5 V, 0 V to 10 V, and ±15 V. Eight channels of fully differential analogue input are provided, with hardware-selectable input ranges of 0 V to 2,5 V, ±13,75 V, and

0 V to 27,5 V. All power rails are derived directly from the host Raspberry Pi SBC.

The circuit is designed to mount directly on top of a Raspberry Pi, providing this popular single-board computer with an analogue I/O interface. Software control is accessible through the Linux industrial input/output (IIO) framework, providing a host of debug and development utilities, cross-platform application programming interface (API) with language bindings for C, C#, MATLAB, and Python.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

IMU with dual-sensing capability
EBV Electrolink Analogue, Mixed Signal, LSI
ST’s 6-axis inertial measurement unit integrates a dual accelerometer up to 320g and embedded AI for activity tracking and high-impact sensing.

Read more...
Plural data converter series
Analogue, Mixed Signal, LSI
Silanna Semiconductor has announced the launch of Plural, a new generation of data converters for customers eager to find a more available, affordable, high-performance alternative to existing brands.

Read more...
Precision JFET op-amp
Altron Arrow Analogue, Mixed Signal, LSI
The specifications of the ADA4620 make it optimal as a front-end amplifier in a data-acquisition system, or for a TIA circuit with high input impedance.

Read more...
A new era in modular I/O solutions
Rugged Interconnect Technologies Analogue, Mixed Signal, LSI
Aerospace and defence system designers are demanding scalable and high-performance I/O solutions and while traditional mezzanine standards have proven reliable, they often fall short of meeting modern bandwidth, size, and flexibility requirements.

Read more...
High voltage instrument op-amp
iCorp Technologies Analogue, Mixed Signal, LSI
The SGM621B is a high accuracy, high voltage instrumentation amplifier, which is designed to set any gain from 1 to 10 000 with one external resistor.

Read more...
High-speed SAR ADC simplifies design
Altron Arrow Analogue, Mixed Signal, LSI
The ADI AD4080 simplifies data converter integration by integrating a low drift reference buffer, low dropout regulators and a 16K result data FIFO buffer.

Read more...
2-wire quad voltage output DAC
Altron Arrow Analogue, Mixed Signal, LSI
The DAC has a 2-wire serial interface that operates at clock rates up to 400 kHz, and this interface is SMBus compatible, allowing multiple devices to be placed on the same bus.

Read more...
Dual-channel ADC for RF applications
RFiber Solutions Analogue, Mixed Signal, LSI
The ARF0471 from Advanced RF is a dual-channel, 14-bit, 3 GSPS ADC, which features an on-chip buffer and sample-and-hold circuit.

Read more...
Infineon launches Edge Ai software solution
Altron Arrow Analogue, Mixed Signal, LSI
Infineon has introduced DEEPCRAFT, a new software solution category brand for Edge AI and machine learning, after the company recognised the huge potential of Edge AI for the market.

Read more...
16-bit voltage output denseDAC
Altron Arrow Analogue, Mixed Signal, LSI
The AD5766 uses a versatile four-wire serial interface that operates at clock rates of up to 50 MHz for write mode, and is compatible with SPI, QSPI, MICROWIRE, and DSP interface standards.

Read more...