Editor's Choice


Using a voltage converter to improve battery efficiency

27 September 2023 Editor's Choice Power Electronics / Power Management

Battery-operated circuits must be energy-efficient for the battery to last a long time. For this, energy-efficient components are selected and combined into a system. The fewer building blocks in an electrical circuit, the greater the energy efficiency of the overall system.

Figure 1 shows an electrical water meter as an example of a battery-operated device. The system uses a MAX32662 microcontroller, with just one supply voltage. The input voltage range lies between 1,71 and 3,63 V.

The microcontroller can be supplied directly by the battery, which delivers a voltage of 2 to 3,6 V, depending on the temperature and state of charge. Only a few additional components are required in the circuit, which means that the overall system efficiency can be very high. However, the current consumption of the microcontroller is largely independent of the actual supply voltage. Whether the microcontroller is operated with 2 or 3,6 V makes no difference to this IC.

For cases like this, new nanopower switching regulators can be used. With these types of switching regulators, the battery voltage can be converted efficiently to a lower value, such as 2 V. A nanopower switching regulator delivers the required current for the microcontroller at the output, but requires less current at the higher voltage on the battery side. Figure 2 shows the circuit for a water meter with an added high-efficiency nanopower switching regulator, the MAX38650.

With the addition of this IC, the battery life can be significantly extended. Life extensions of 20% and higher are easily possible; the exact savings effect differs from case to case because of the numerous influencing parameters, such as temperature, peak currents, periodic switch-off of the sensor, and others. The quiescent current of the added DC-to-DC converter is decisive here. If the switching regulator consumes too much energy, the anticipated savings disappear.

Figure 3 shows a circuit with the MAX38650 nanopower voltage regulator. As the name indicates, the quiescent current of this IC is in the nanoampere range. During operation, the switching regulator draws only 390 nA of quiescent current. During times when the DC-to-DC converter can be switched off, it needs only 5 nA of shutdown current. This nanopower voltage converter is ideal for saving energy in a system such as the one shown in Figure 1.

As can be seen in Figure 3, only a few passive external components are required. Instead of a resistor voltage divider, only one resistor on the RSEL pin is used to set the output voltage. A resistor voltage divider consumes a considerable amount of current, which, depending on the voltage and resistor, can greatly exceed the quiescent current of the MAX38650. Thus, this IC uses a variable resistor, which is only briefly checked when the circuit is switched on. The IC detects the set-point value for the output voltage through the fact that for a short time during switch-on, 200 µA of current is passed through this variable resistor. The resulting voltage is measured and then stored internally in the IC. This means there are no energy losses during operation through a conventional voltage divider.

By adding a voltage converter, it is possible to increase the efficiency of a system and extend the life on a charge of a battery-operated device.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...
Ultra-low power MEMS accelerometer
Altron Arrow Analogue, Mixed Signal, LSI
Analog Devices’ ADXL366 is an ultra-low power, 3-axis MEMS accelerometer that consumes only 0,96 µA at a 100 Hz output data rate and 191 nA when in motion-triggered wake-up mode.

Read more...
Interlynx-SA: Engineering SA’s digital backbone
Interlynx-SA Editor's Choice
At the heart of the industrial shift towards digitalisation lies the growing demand for telemetry, Industrial IoT (IIoT), advanced networking, and robust data solutions, and Interlynx-SA is meeting this demand.

Read more...
Converting high voltages without a transformer
Altron Arrow Editor's Choice Power Electronics / Power Management
With appropriate power converter ICs, such as the LTC7897 from Analog Devices, many applications can be suitably powered without having to use complex and cost-intensive transformers.

Read more...
MCU platform for battery-powered devices
Altron Arrow DSP, Micros & Memory
The MCX W23 is a new dedicated wireless MCU platform from NXP for battery-powered sensing devices.

Read more...
Grinn Global: From design house to SoM innovator
Editor's Choice
From its beginnings as a small electronic design house, Grinn Global has moved into the spotlight as a system-on-module innovator working alongside technology giants like MediaTek.

Read more...
Precision MEMS IMU modules
Altron Arrow Analogue, Mixed Signal, LSI
The ADIS16575/ADIS16576/ADIS16577 from Analog Devices are precision, MEMS IMUs that includes a triaxial gyroscope and a triaxial accelerometer.

Read more...
Altron Arrow introduces GX10 supercomputer
Altron Arrow AI & ML
Powered by the NVIDIA GB10 Grace Blackwell superchip, this is desktop-scale AI performance previously only available to enterprise data centres.

Read more...
MEMS with embedded AI processing
Altron Arrow Analogue, Mixed Signal, LSI
STMicroelectronics has announced an inertial measurement unit that combines sensors tuned for activity tracking and high-g impact measurement into a single, space-saving package.

Read more...
Multicore CPUs with on-chip accelerators
Altron Arrow DSP, Micros & Memory
NXP’s MCX N94x and N54x MCUs offer advanced features for consumer and industrial applications, including connectivity, security, and power management.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved