Editor's Choice


Using a voltage converter to improve battery efficiency

27 September 2023 Editor's Choice Power Electronics / Power Management

Battery-operated circuits must be energy-efficient for the battery to last a long time. For this, energy-efficient components are selected and combined into a system. The fewer building blocks in an electrical circuit, the greater the energy efficiency of the overall system.

Figure 1 shows an electrical water meter as an example of a battery-operated device. The system uses a MAX32662 microcontroller, with just one supply voltage. The input voltage range lies between 1,71 and 3,63 V.

The microcontroller can be supplied directly by the battery, which delivers a voltage of 2 to 3,6 V, depending on the temperature and state of charge. Only a few additional components are required in the circuit, which means that the overall system efficiency can be very high. However, the current consumption of the microcontroller is largely independent of the actual supply voltage. Whether the microcontroller is operated with 2 or 3,6 V makes no difference to this IC.

For cases like this, new nanopower switching regulators can be used. With these types of switching regulators, the battery voltage can be converted efficiently to a lower value, such as 2 V. A nanopower switching regulator delivers the required current for the microcontroller at the output, but requires less current at the higher voltage on the battery side. Figure 2 shows the circuit for a water meter with an added high-efficiency nanopower switching regulator, the MAX38650.

With the addition of this IC, the battery life can be significantly extended. Life extensions of 20% and higher are easily possible; the exact savings effect differs from case to case because of the numerous influencing parameters, such as temperature, peak currents, periodic switch-off of the sensor, and others. The quiescent current of the added DC-to-DC converter is decisive here. If the switching regulator consumes too much energy, the anticipated savings disappear.

Figure 3 shows a circuit with the MAX38650 nanopower voltage regulator. As the name indicates, the quiescent current of this IC is in the nanoampere range. During operation, the switching regulator draws only 390 nA of quiescent current. During times when the DC-to-DC converter can be switched off, it needs only 5 nA of shutdown current. This nanopower voltage converter is ideal for saving energy in a system such as the one shown in Figure 1.

As can be seen in Figure 3, only a few passive external components are required. Instead of a resistor voltage divider, only one resistor on the RSEL pin is used to set the output voltage. A resistor voltage divider consumes a considerable amount of current, which, depending on the voltage and resistor, can greatly exceed the quiescent current of the MAX38650. Thus, this IC uses a variable resistor, which is only briefly checked when the circuit is switched on. The IC detects the set-point value for the output voltage through the fact that for a short time during switch-on, 200 µA of current is passed through this variable resistor. The resulting voltage is measured and then stored internally in the IC. This means there are no energy losses during operation through a conventional voltage divider.

By adding a voltage converter, it is possible to increase the efficiency of a system and extend the life on a charge of a battery-operated device.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Wi-Fi 6 and Bluetooth LE co-processor
Altron Arrow Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has released its ST67W611M1, a low-power Wi-Fi 6 and Bluetooth LE combo co-processor module.

Read more...
High performance SDR design considerations
RFiber Solutions Editor's Choice DSP, Micros & Memory
As the spectrum gets increasingly crowded, and adversaries more capable, the task of examining wide bands and making sense of it all, while not missing anything, gets harder.

Read more...
Microtronix revives defunct cell phone plant
Microtronix Manufacturing Editor's Choice Manufacturing / Production Technology, Hardware & Services
In a significant move for South Africa’s struggling electronics manufacturing sector, local technology firm Microtronix has breathed new life into a formerly defunct cell phone manufacturing facility.

Read more...
How smart components drive sustainable industrial efficiency
TRX Electronics Editor's Choice Manufacturing / Production Technology, Hardware & Services
Manufacturing industries across South Africa face mounting pressure to reduce operational costs whilst meeting increasingly stringent environmental regulations, and the path to achieving these goals lies in embracing advanced electronic components that enable smarter, more efficient industrial operations.

Read more...
Empowering innovation with ST’s AI processors
Altron Arrow AI & ML
Artificial intelligence is no longer just a futuristic concept – it is here, and it is transforming industries at an unprecedented pace.

Read more...
1-Wire EEPROM with secure authenticator
Altron Arrow DSP, Micros & Memory
The DS28E54 secure authenticator combines FIPS 202-compliant secure hash algorithm (SHA-3) challenge and response authentication with secured electrically erasable programmable read-only memory.

Read more...
From the editor's desk: Fostering a love for engineering through DIY projects
Technews Publishing Editor's Choice
Many students are turning away from these perceived ‘hard’ STEM subjects, moving instead toward soft sciences and fields that seem less intimidating or more immediately rewarding.

Read more...
The 6 GHz band radio solution
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Analog Devices’ 16 nm transceiver family offers a highly integrated solution for this new frequency band, featuring low power consumption and high performance.

Read more...
Satellite IoT through non-terrestrial networks
Future Electronics Editor's Choice Telecoms, Datacoms, Wireless, IoT
Non-terrestrial networks fill cellular coverage gaps in remote areas by extending terrestrial networks and are not subject to disruptions from natural disasters or sabotage.

Read more...
New clock generator family
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Based on Skyworks’ fifth generation DSPLL and MultiSynth technologies, these devices enable any-frequency, any-output clock generation.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved