Researchers discover a simple way to make batteries last longer
30 September 2024
Power Electronics / Power Management
Researchers at the SLAC-Stanford Battery Center have discovered a way to extend the life of Li-ion batteries by up to 70% with a simple change to the process immediately after production. In the research, which was published in the online journal, Joule, 186 Li-ion batteries were cycled across the initial formation protocols, but used exactly the same aging test. It was found that by using a high-current formation charge on the battery’s first charge, that the lifecycle was extended by up to 70%.
Formation is a critical step in battery manufacturing. During this process, lithium inventory is consumed to form the solid electrolyte interphase (SEI), which in turn determines the battery lifetime. During the research, formation charge and temperature were two key parameters that were identified that controlled battery longevity. Surprisingly, a high formation current on the first battery cycle extended the battery lifecycle by an average of 50%. Unlike elevated formation temperature, which boosts battery performance by forming a robust SEI, the cycle life improvement for fast-formed cells arises from a shifted electrode-specific utilisation after formation.
For more information visit www.cell.com/joule
Further reading:
The role of bidirectional charging in the evolving energy landscape
Avnet Silica
Power Electronics / Power Management
As reliance on renewable sources like wind and solar continues to grow, the need for efficient energy flow and storage solutions has become more critical than ever.
Read more...
How to calculate a buck converter’s inductance
Power Electronics / Power Management
In the buck circuit, the inductor design is a key element that is closely related to system efficiency, the output voltage ripple, and loop stability.
Read more...
High-current EMI filters
Accutronics
Power Electronics / Power Management
TDK has introduced 20 and 40 A, 80 V DC board-mount EMI filters, reducing differential mode conducted emissions for switching power supplies with high input current requirements.
Read more...
Isolated SMD DC-DC converters
iCorp Technologies
Power Electronics / Power Management
MinMax has launched a series of isolated SMD DC-DC converters, the MSU01 series delivering 1 W, while the MSU02 series offers 2 W output.
Read more...
Next-gen power meter
Electrocomp Express
Power Electronics / Power Management
The VT-PWR-LV is a next-gen Vista Touch power meter from Trumeter for single, split, and three-phase systems.
Read more...
Advanced PMIC for high-performance AI applications
ASIC Design Services
Power Electronics / Power Management
Microchip Technology has announced the MCP16701, a Power Management Integrated Circuit (PMIC) designed to meet the needs of high-performance MPU and FPGA designers.
Read more...
New SiC power MOSFET
Future Electronics
Power Electronics / Power Management
STMicroelectronics’ SCT012H90G3AG is a robust, automotive-grade SiC MOSFET, engineered for demanding power electronics, featuring a 900?V drain-source voltage and exceptionally low on-resistance of 12?mO at 60?A.
Read more...
Fundamental motor control design challenges and solutions
Power Electronics / Power Management
Mouser Electronics has announced a new eBook in collaboration with Qorvo, featuring industry experts providing key insights into methods, power efficiency and integration solutions available for motor control applications.
Read more...
Power management IC for battery products
Power Electronics / Power Management
The nPM1304 PMIC complements Nordic’s nPM1300 PMIC with a highly integrated, ultra-low power solution and precision fuel gauging for small size battery applications.
Read more...
Powering Innovation eBook: Changing what’s possible
Power Electronics / Power Management
This exclusive read, entitled ‘Changing what’s Possible,’ delves into how power dense Vicor modules enable many world-changing innovations across various sectors.
Read more...