Telecoms, Datacoms, Wireless, IoT


Improving accuracy of outdoor devices

31 Jul 2025 Telecoms, Datacoms, Wireless, IoT

GNSS has proven to be a valuable positioning technology, but it has inherent weaknesses that hinder its effectiveness in certain scenarios. Fundamentally, GNSS needs to be able to ‘see’ the sky, so it can receive the direct signal from the satellites. In a real-world environment, accessing a direct signal is not always possible, and it cannot be relied upon as the only solution to provide a device with accurate location at all times.

Multi-band GNSS can be utilised to mitigate the detrimental effects of multipath. The technology uses multiple frequency bands, typically combining generic L1 (GPS L1, Galileo E1, GLONASS G1 and BDS B1) and modernised L5 signals (GPS L5, Galileo E5a and BDS B2a). The rationale behind this approach lies in the distinct characteristics of different frequency bands. Although other bands such as L2 exist, this article will not discuss them because receivers that support them typically have a higher cost of ownership that is not compatible with mass-market devices.

The GNSS positioning technologies that can improve accuracy in outdoor devices

The L1 band is susceptible to multipath interference, whereas the L5 band exhibits superior multipath mitigation capabilities. By integrating both signals, the multi-band GNSS system can effectively discriminate between direct and reflected signals, enhancing the accuracy of positioning results. In addition to the advantages offered by the L5 signal characteristics, the implementation of multi-band signals can also help alleviate the adverse impact of ionospheric disturbances on positioning accuracy.

Real-time kinetic (RTK) positioning is a technique designed to counteract signal errors in GNSS positioning. It utilises a nearby reference station with known coordinates or a network of reference stations (also known as network RTK) to provide correction data in real-time via a carrier (cellular, broadcast radio, or satellite). The basic principle behind RTK is that it uses the carrier-phase differential technique to compensate for common errors from the satellites and atmosphere using the correction data. This approach significantly improves the GNSS accuracy to centimetre or decimetre level in open or semi-open environments.

Dead reckoning (DR) is a technique that provides continuous positioning even in the absence of GNSS signals. It relies on internal sensors (such as accelerometers and gyroscopes) and external sensors (such as odometers or speed pulses), to estimate a vehicle’s movement based on its initial position and subsequent changes in velocity, orientation, and position.

The underlying principle of DR is that even in situations where GNSS signals are weakened or unusable due to reflections or blockages, the vehicle’s motion can still be tracked by integrating data from these sensors over time. While DR does not provide absolute positioning, it can bridge GNSS signal gaps and offer reliable positioning estimates, making it valuable in scenarios where signal reflections or brief signal interruptions are common.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power amps for portable radio comms systems
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
CML Micro expands its SµRF product portfolio with a pair of high efficiency single- and two-stage power amplifiers that offer outstanding performance for a wide range of dual-cell lithium battery-powered wireless devices.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
Isolated SMD DC-DC converters
iCorp Technologies Power Electronics / Power Management
MinMax has launched a series of isolated SMD DC-DC converters, the MSU01 series delivering 1 W, while the MSU02 series offers 2 W output.

Read more...
Choosing a GNSS receiver
RF Design Telecoms, Datacoms, Wireless, IoT
Applications requiring sub-ten-meter positioning accuracy today can choose between single-band or dual-band technology. While this decision might seem as simple as flipping a coin, it is far from that.

Read more...
Tri-Teq’s latest range of filters
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Tri-Teq recently presented its latest filter products, which included passive and co-site mitigation filters (lumped element and suspended substrate technologies) and tunable filters (bandpass and harmonic switched filters).

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
Links Field Networks: The perfect fit for telematics in Africa
Links Field Networks Telecoms, Datacoms, Wireless, IoT
Operating at the intersection of global SIM innovation and local market intelligence, Links Field Networks has emerged as a premier provider of telematics-oriented connectivity across Africa and beyond.

Read more...
RF direct conversion receiver
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The CMX994 series from CML Micro is a family of direct conversion receiver ICs with the ability to dynamically select power against performance modes.

Read more...
Bridging the future with RAKWireless WisNode devices
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The WisNode Bridge series by RAKWireless is designed to convert traditional wired industrial protocols like RS485 and Modbus into LoRa-compatible signals.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved