News


Micro-batteries for miniature devices

15 October 2008 News

As the trend of miniaturisation in electronic devices continues, most of these devices tend to have high power requirements due to a high degree of various functional integrations.

Batteries of various sizes are widely used as power supply sources for almost all electrical and electronic devices, but space constraints tend to favour micro-batteries. As space constraints grow ever tighter, researchers are envisioning that the energy for tomorrow’s miniature electronic devices could come from tiny micro-batteries about half the size of a human cell and built with viruses.

Massachusetts Institute of Technology (MIT) engineers have developed a way to at once create and install such micro-batteries by stamping them onto a variety of surfaces. These batteries could one day power a range of miniature devices, from labs-on-a-chip to implantable medical sensors.

Batteries consist of two opposite electrodes – the anode and cathode – separated by an electrolyte. In the current work, the MIT team created both the anode and the electrolyte. First, on a clear, rubbery material the team used a common technique called soft lithography to create a pattern of tiny posts either four or eight millionths of a metre in diameter. On top of these posts, they then deposited several layers of two polymers that together act as the solid electrolyte and battery separator.

The next step involved viruses that self-assemble atop the polymer layers on the posts, ultimately forming the anode. They altered the virus’s genes so that it formed protein coats that collect molecules of cobalt oxide to form ultra-thin wires. The final result: a stamp of tiny posts each covered with layers of electrolyte and the cobalt oxide anode. This was then turned over and transferred to a platinum structure.

This pioneering method used by the researchers to fabricate and position micro-battery electrodes, and achieve virus-based assembly does not involve any expensive equipment, and is done at room temperature. The resulting electrode arrays exhibit full electrochemical functionality.

In a recent issue of the Proceedings of the National Academy of Sciences, the team describes assembling and successfully testing two of the three key components of a battery. In addition to developing the third part of a full battery – the cathode – via the viral assembly technique, the team is also exploring a stamp for use on curved surfaces and integrating the batteries with biological organisms.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)21 680 3274, [email protected], www.frost.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor's desk: Exciting times ahead?
Technews Publishing News
There are many subjects that excite me in this world, but two of the larger technical subjects are, firstly, renewable energy, and secondly, the idea of artificial intelligence as it continues to evolve ...

Read more...
Microchip expands partnership with TSMC
News
Microchip Technology has announced it has expanded its partnership with TSMC to enable a specialised 40 nm manufacturing capacity at Japan Advanced Semiconductor Manufacturing.

Read more...
Huge SA grid battery project
News
A standalone battery energy storage system (BESS) has won preferred bidder status under South Africa’s Energy Storage Capacity Independent Power Producer Procurement Programme (ESIPPPP).

Read more...
Mouser sponsors NCP Cup 2024
News
The NXP Cup is an EMEA-based autonomous car competition, presented by NXP Semiconductors, which is designed to provide students with real-world experiences in autonomous vehicle programming and building.

Read more...
TrinaTracker brings its smart solar tracking to SA
News
The Vanguard 1P is designed to provide customers with trackers that combine suitability for flat terrain, together with outstanding system stability and reliability, quick installation, and flexible external compatibility.

Read more...
Nordex adding 830 MW of wind generation
News
Nordex Energy South Africa will be adding 830 MW of wind energy generation capacity to the company’s already-installed 1 GW base.

Read more...
Invertek produces its three millionth drive
iTek Drives News
Invertek Drives Ltd, a global manufacturer of variable frequency drive (VFD) technology, has celebrated producing its three millionth VFD, just three years after its two-million milestone.

Read more...
Analog Devices’ digital storefront is live
News
Analog Devices has designed an improved digital experience with users in mind – a new analog.com website and eShop.

Read more...
Vicor Powering Innovation podcast
News
The episode explores electrification with Lightning Motorcycles, a company that produces the fastest electric motorcycle on the planet.

Read more...
ModusToolbox Workshop 3
News
This workshop will focus on enabling a PSoC development kit, connected over Wi-Fi and leveraging MQTT, to create the framework of an IoT application.

Read more...