News


Controlling individual bits in quantum computers

5 August 2009 News

Optical lattices use lasers to separate rubidium atoms (pictured in red) for use as information ‘bits’ in neutral-atom quantum processors – prototype devices that designers are trying to develop into full-fledged quantum computers.

Now scientists at the US National Institute of Standards and Technology (NIST) have managed to isolate and control pairs of the rubidium atoms with polarised light, an advance that may bring quantum computing a step closer to reality.

The physicists have overcome a hurdle in quantum computer development, having devised a viable way to manipulate a single bit in a quantum processor without disturbing the information stored in its neighbours. The approach, which makes novel use of polarised light to create ‘effective’ magnetic fields, could bring the long-sought computers a step closer to reality.

A great challenge in creating a working quantum computer is maintaining control over the carriers of information, the ‘switches’ in a quantum processor, while isolating them from the environment. These quantum bits, or qubits, have the uncanny ability to exist in both on and off positions simultaneously, giving quantum computers the power to solve problems conventional computers find intractable, such as breaking complex cryptographic codes.

One approach to quantum computer development aims to use a single isolated rubidium atom as a qubit. Each such rubidium atom can take on any of eight different energy states, so the design goal is to choose two of these energy states to represent the on and off positions. Ideally, these two states should be completely insensitive to stray magnetic fields that can destroy the qubit’s ability to be simultaneously on and off, ruining calculations. However, choosing such field-insensitive states also makes the qubits less sensitive to those magnetic fields used intentionally to select and manipulate them.

“It is a bit of a catch-22,” says NIST’s Nathan Lundblad. “The more sensitive to individual control you make the qubits, the more difficult it becomes to make them work properly.”

To solve the problem of using magnetic fields to control the individual atoms while keeping stray fields at bay, the NIST team used two pairs of energy states within the same atom. Each pair is best suited to a different task: one pair is used as a ‘memory’ qubit for storing information, while the second ‘working’ pair comprises a qubit to be used for computation. While each pair of states is field-insensitive, transitions between the memory and working states are sensitive and amenable to field control. When a memory qubit needs to perform a computation, a magnetic field can make it change hats. And it can do this without disturbing nearby memory qubits.

The NIST team demonstrated this approach in an array of atoms grouped into pairs, using the technique to address one member of each pair individually. Grouping the atoms into pairs, Lundblad says, allows the team to simplify the problem from selecting one qubit out of many to selecting one out of two, which can be done by creating an effective magnetic field, not with electric current as is ordinarily done, but with a beam of polarised light. The polarised light technique, which the NIST team developed, can be extended to select specific qubits out of a large group, making it useful for addressing individual qubits in a quantum processor without affecting those nearby.

“If a working quantum computer is ever to be built,” Lundblad says, “these problems need to be addressed, and we think we have made a good case for how to do it.” But, he adds, the long-term challenge to quantum computing remains that of integrating all of the required ingredients into a single apparatus with many qubits.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

SACEEC celebrates standout industrial innovation on the KITE 2025 show floor
News
Exhibitor innovation took the spotlight at the KITE 2025 as the South African Capital Equipment Export Council announced the winners of its prestigious New Product & Innovation Awards.

Read more...
SA team for International Olympiad in Informatics
News
The Institute of Information Technology Professionals South Africa has named the team that will represent South Africa at this year’s International Olympiad in Informatics.

Read more...
Anritsu and Bluetest to support OTA measurement
News
Anritsu Company and Sweden-based Bluetest AB have jointly developed an Over-The-Air measurement solution to evaluate the performance of 5G IoT devices compliant with the RedCap specification.

Read more...
The current sentiment of the global electronics manufacturing supply chain
News
In its latest report, the Global Electronics Association provides an analysis of the current sentiment and conditions in the global electronics manufacturing supply chain as of June 2025.

Read more...
Global semiconductor sales increase in May
News
The Semiconductor Industry Association recently announced global semiconductor sales were $59,0 billion during the month of May 2025, an increase of 19,8%.

Read more...
New president for Avnet EMEA
News
Avnet has announced that Avnet Silica’s president, Gilles Beltran, will step into the role of president of Avnet EMEA.

Read more...
DARPA sets new record for wireless power beaming
News
In tests performed in New Mexico, the Persistent Optical Wireless Energy Relay program team recorded over 800 W of power delivered for about 30 seconds with a laser beam crossing 8,6 kilometres.

Read more...
Nordic Semiconductor acquires Memfault
RF Design News
With this acquisition, Nordic has launched its first complete chip-to-cloud platform for lifecycle management of connected products.

Read more...
Trina storage demonstrates high efficiency and long-term reliability
News
Independent testing confirms 95,2% DC efficiency and 98% capacity retention after one year of operation.

Read more...
From the editor's desk: AI – a double-edged sword
Technews Publishing News
As with any powerful tool, AI presents challenges, some of which, if not carefully managed, threaten to undo the potential that it can offer.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved