News


Bionanoelectronic transistor enhances conventional electronics

11 November 2009 News

Over the past few years, miniaturisation has become the trend of domains ranging from electronics to materials.

Rapid progress in miniaturisation has led to the development of devices and electronic components that are as small as the components of living cells. This has opened up novel applications in bionanoelectronics.

Bionanoelectronics is a field in which the electronic and the biological components can work simultaneously. For example, devices such as palmtops or laptops can be compounded along with biological machines to enhance operating efficiency. In the past, research teams have tried to integrate biological systems with microelectronics, but have not met with success. A key challenge faced by various research groups in this domain is the incompatibility of the materials that are incorporated in the bionanoelectronic devices. The inorganic materials used in the fabrication of these bionanoelectronic devices often fail to operate efficiently in concert with the biological materials.

Aiding research in this direction, a team of researchers from the Lawrence Livermore National Laboratory (LLNL) in California has used a novel approach that employs lipid-coated nanowires to fabricate prototype bionanoelectronic devices. Instead of fabricating the biological machines with microelectronics, the team has used a nanoelectronic platform. Initially, to fabricate the bionanoelectronic platform, lead scientist Aleksandr Noy’s team employed lipid membranes that are omnipresent in biological cells. As these membranes have a natural tendency to form a stable, self-healing and impenetrable barrier to ions and small molecules, the LLNL team decided to use them in the bionanoelectronic platform.

The tendency of these lipid membranes to perform a large number of protein functions such as transport, critical recognition and signal transduction in the cell, attracted the team toward the lipid membrane. Further, the nanowires that formed a channel of a field-effect transistor were coated with the lipid bilayer membrane. The lipid bilayer shell acts as a barrier between the nanowire surface and the solution species. The team termed these coated nanowires the ‘shielded wire configuration.’ This configuration allowed them to use membrane pores as the only pathway for the ions to reach the nanowire. This was how they were able to use the nanowire device to monitor specific transport and also to control the membrane protein.

The novel approach proposed by the team at LLNL employed the same principles and designs that are employed by the human body, yet the team has used a very different materials platform. LLNL’s bionanoelectronic devices were built with inorganic materials, utilised electron currents and electric fields, and were powered by an external electric source.

According to the team, the advantages of the nanowire transistors are numerous: they have the capability to operate in ionic solutions, which is the native environment of most biological systems; an individual chip has a tendency to domiciliate hundreds of individual devices, providing redundancy ability to run parallel measurement and easy multiplexing possibilities; and the transistor provides an effective means of amplifying very weak signals generated by biological events.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)18 464 2402, [email protected], www.frost.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the Editor's desk: Growth through inclusivity
Technews Publishing News
As the engineering fields in South Africa continue to make progress toward gender equality, we are finally starting to see the presence and contribution of women in engineering and industrial roles.

Read more...
KITE 2025 proves its value
News
The KwaZulu-Natal Industrial Technology Exhibition (KITE) 2025 confirmed its place as KwaZulu-Natal’s must-attend industrial event, drawing thousands of industry professionals.

Read more...
Otto Wireless Solutions announces promotion of Miyelani Kubayi to technical director
Otto Wireless Solutions News
Otto Wireless Solutions is proud to announce the promotion of Miyelani Kubayi to the position of technical director, effective 1 August 2025.

Read more...
DMASS experiences continued slowdown
News
The European electronic components distribution market continued its downward trajectory in the second quarter of 2025, according to new figures released by DMASS.

Read more...
World-first zero second grid-to-backup power switch
News
JSE-listed cable manufacturer, South Ocean Electric Wire, has completed a solar installation it says marks a global first: a seamless switch from grid to backup power in zero seconds.

Read more...

News
OMC deploys cobots to improve throughput 10x, while maintaining quality and ensuring consistency of fibre optic production.

Read more...
Cobots for opto production line
News
OMC deploys cobots to improve throughput 10x, while maintaining quality and ensuring consistency of fibre optic production.

Read more...
SACEEC celebrates standout industrial innovation on the KITE 2025 show floor
News
Exhibitor innovation took the spotlight at the KITE 2025 as the South African Capital Equipment Export Council announced the winners of its prestigious New Product & Innovation Awards.

Read more...
SA team for International Olympiad in Informatics
News
The Institute of Information Technology Professionals South Africa has named the team that will represent South Africa at this year’s International Olympiad in Informatics.

Read more...
Anritsu and Bluetest to support OTA measurement
News
Anritsu Company and Sweden-based Bluetest AB have jointly developed an Over-The-Air measurement solution to evaluate the performance of 5G IoT devices compliant with the RedCap specification.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved