mobile | classic
Dataweek Electronics & Communications Technology Magazine

Follow us on:
Follow us on Facebook Share via Twitter Share via LinkedIn


Electronics Buyers' Guide

Electronics Manufacturing & Production Handbook 2019


Bionanoelectronic transistor enhances conventional electronics
11 November 2009, News

Over the past few years, miniaturisation has become the trend of domains ranging from electronics to materials.

Rapid progress in miniaturisation has led to the development of devices and electronic components that are as small as the components of living cells. This has opened up novel applications in bionanoelectronics.

Bionanoelectronics is a field in which the electronic and the biological components can work simultaneously. For example, devices such as palmtops or laptops can be compounded along with biological machines to enhance operating efficiency. In the past, research teams have tried to integrate biological systems with microelectronics, but have not met with success. A key challenge faced by various research groups in this domain is the incompatibility of the materials that are incorporated in the bionanoelectronic devices. The inorganic materials used in the fabrication of these bionanoelectronic devices often fail to operate efficiently in concert with the biological materials.

Aiding research in this direction, a team of researchers from the Lawrence Livermore National Laboratory (LLNL) in California has used a novel approach that employs lipid-coated nanowires to fabricate prototype bionanoelectronic devices. Instead of fabricating the biological machines with microelectronics, the team has used a nanoelectronic platform. Initially, to fabricate the bionanoelectronic platform, lead scientist Aleksandr Noy’s team employed lipid membranes that are omnipresent in biological cells. As these membranes have a natural tendency to form a stable, self-healing and impenetrable barrier to ions and small molecules, the LLNL team decided to use them in the bionanoelectronic platform.

The tendency of these lipid membranes to perform a large number of protein functions such as transport, critical recognition and signal transduction in the cell, attracted the team toward the lipid membrane. Further, the nanowires that formed a channel of a field-effect transistor were coated with the lipid bilayer membrane. The lipid bilayer shell acts as a barrier between the nanowire surface and the solution species. The team termed these coated nanowires the ‘shielded wire configuration.’ This configuration allowed them to use membrane pores as the only pathway for the ions to reach the nanowire. This was how they were able to use the nanowire device to monitor specific transport and also to control the membrane protein.

The novel approach proposed by the team at LLNL employed the same principles and designs that are employed by the human body, yet the team has used a very different materials platform. LLNL’s bionanoelectronic devices were built with inorganic materials, utilised electron currents and electric fields, and were powered by an external electric source.

According to the team, the advantages of the nanowire transistors are numerous: they have the capability to operate in ionic solutions, which is the native environment of most biological systems; an individual chip has a tendency to domiciliate hundreds of individual devices, providing redundancy ability to run parallel measurement and easy multiplexing possibilities; and the transistor provides an effective means of amplifying very weak signals generated by biological events.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)18 464 2402,,

  Share on Facebook Share via Twitter Share via LinkedIn    

Further reading:

  • From the editor's desk: Making an aaS of ourselves
    28 August 2019, Technews Publishing, News
    First of all, I must extend the sincere apologies of Technews Publishing to Hi-Q Electronics. We have worked closely with Hi-Q for many years and yet still managed to get its address and contact details ...
  • Electronics news digest
    28 August 2019, News
    South Africa •Canadian technology company Sciencetech is now distributed in South Africa by Intercal. For over 33 years, Sciencetech’s products have been exported to countries around the world, within ...
  • Clearing the static: Electrostatic packaging - Topic 6
    28 August 2019, Altico Static Control Solutions, News
    The purpose of electrostatic discharge (ESD) packaging is to protect ESD-sensitive objects from ESD damage; especially when items are being transported outside of the designated ESD protected area. ESD ...
  • What can sport teach us about MRO procurement?
    28 August 2019, RS Components (SA), News
    Just like triathlon transitions, if you don?t respect the details and aren?t supportive about making manufacturing flexible, as a supplier you aren?t contributing to your customers? success.
  • AREI hosts industry for business breakfast
    28 August 2019, News
    Attendees of a business breakfast hosted by AREI (Association of Representatives for the Electronics Industry) on 24 July were treated to an inspirational talk by computer scientist and entrepreneur Stafford Masie.
  • Win a Microchip evaluation kit
    28 August 2019, News
    Dataweek readers are being offered the chance to win a SAM L21 Xplained Pro evaluation kit for evaluating and prototyping with Microchip Technology’s ultra-low-power SAM L21 ARM Cortex-M0+ based microcontrollers ...
  • Wits University to feature at AI Expo Africa
    28 August 2019, News
    Wits University will be sending a high-level delegation to this year’s AI Expo Africa, where it will launch a major research initiative that is intended to bring about a step change in scientific research ...
  • u-blox sells 500 millionth GNSS receiver
    28 August 2019, RF Design, News
    u-blox recently sold its 500 millionth global navigation satellite system (GNSS) receiver. As the only technology capable of delivering absolute position anywhere on the planet, GNSS-based positioning ...
  • New African AI initiative at Wits University
    28 August 2019, News
    The Molecular Sciences Institute (MSI) at the University of the Witwatersrand (Wits) in Johannesburg, South Africa, in partnership with the Cirrus Initiative, today announced plans for a new artificial ...
  • NuVision Electronics to host wireless seminars
    28 August 2019, NuVision Electronics, News
    NuVision Electronics will soon be holding a seminar series highlighting its offering of technology for the wireless development ecosystem. The two seminars are free of charge to attend, and will take ...
  • Wits University to feature at AI Expo Africa
    31 July 2019, News
    Wits University will be sending a high-level delegation to this year’s AI Expo Africa, where it will launch a major research initiative that is intended to bring about a step change in scientific research ...
  • Celebrating 15 years of Laser Stencil Technology
    31 July 2019, Laser Stencil Technology, News
    Since its inception in 2004, Laser Stencil Technology has grown into a prominent figure in the South African electronics manufacturing industry. Having been involved in circuit board manufacturing using ...

Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronics Buyers’ Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Terms & conditions of use, including privacy policy
PAIA Manual


    Classic | Mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.