News


Looking beyond radar, the car’s virtual eye

25 March 2020 News

Faster, higher-resolution radar sensors have enabled the next generation of driver assistance technologies through improvements in vehicle safety and comfort in view.

If global investors know anything about where money is to be made, the winners in the automotive industry will be those that embrace and master the three megatrends disrupting the market:

1. The proliferation of advanced driver assistance system (ADAS) technologies, with the prospect that eventually autonomous vehicles (AVs) will be licenced for operation on public roads.

2. Electrification.

3. Mobility-as-a-service, which is challenging the traditional concept of individual car ownership.

The importance of these trends is reflected in a comparison of the market capitalisations of Tesla, which makes fewer than 400 000 vehicles a year, and Ford. Tesla bases its strategy on a series of innovations in battery-powered traction, autonomous driving and robo-taxi capabilities to support Tesla-branded ridesharing services.

Ford makes much of its money from traditional American pickup trucks that feature high-powered internal combustion engines. Ford, with a 2017 production volume of more than six million units, had a market capitalisation of just $37 billion in late 2019, while Tesla, tiny by comparison, was worth $44 billion.

Adoption of mobility-as-a-service has been driven by business model and software innovation pioneered by the likes of Uber and increasing electrification depends on production innovations such as Tesla’s battery Gigafactory. However, the focus of innovation in driver assistance is on hardware and software technology – a combination of sophisticated sensor systems and artificial intelligence.

All assisted driving systems rely in part on multiple forms of perception technology: in fully autonomous vehicles, optical technologies such as lidar (light detection and ranging) and visual cameras will work alongside electromagnetic motion sensors (accelerometers, gyroscopes and magnetometers) and RF/microwave systems (radar and satellite positioning).

It might seem surprising that radar, a technology that first caught the public’s attention as long ago as the second World War, should today be playing a part in the most exciting developments in automotive technology. In fact, many 24 GHz radar sensors are mounted in the bumpers of vehicles on the road today– Analog Devices alone has, to date, supplied some 300 million units to automotive manufacturers for use in applications such as blind-spot detection, automated lane changing and autonomous emergency braking (AEB).

But demand for ever higher levels of driver assistance, supported by the evolution of functions such as AEB and adaptive cruise control (ACC) in new ADAS implementations, is driving suppliers such as Analog Devices to develop new radar systems that offer higher precision, longer range, faster detection and a more complete picture of the technology for two reasons: safety and comfort.

Driver assistance systems such as AEB and ACC save lives and prevent accidents. Cars that feature these systems are rewarded with a higher official NCAP safety score, a mark that lifts the value and consumer appeal of new cars.

Both AEB and autonomous emergency steering systems continue to evolve in scope and complexity to serve the growing market for vehicles in the Level 2 or Level 3 (L2/L3) categories of driver assistance technology. New NCAP specifications, for example, call for better detection of pedestrians – vulnerable road users, in NCAP’s terminology. Developing AEB systems will operate reliably in more complex events than they are typically specified for by controlling the braking function at higher vehicle speeds in both urban and highway settings.

The market is also responding to signals from car buyers who want technology to reduce the effort involved in driving, particularly on the motorway. Premium cars such as the Mercedes-Benz S-Class already offer limited highway autopilot capabilities, such as adaptive control of distance to the car in front and active steering assistance to keep the car in its lane. Automotive suppliers are continually implementing enhancements to these features so that they can be used in a wider range of more complex situations. This intensifies the need for radar sensors that offer superior performance.

The move toward higher L4 and L5 autonomy, which isolates the driver entirely from direct control of the vehicle, will require the development of sensing systems that have a 360° view around the car in real time. The control systems for these robo-taxis will be incredibly complex and will need redundancy to eliminate the risk of false detection events, combining the inputs from separate sensor types such as radar, cameras and lidar sensors.

Visual cameras can be used to assist the recognition of objects such as human beings, animals and road signs. Lidar technology creates rich point clouds, taking an instantaneous measurement of the vehicle’s distance from objects in the outside world and measuring the objects’ sizes to produce a high-resolution 3D map of the outside world.

But a radar sensor’s unique capabilities, which are continually being extended, make it a crucial complement to these other sensor types in L4 and L5 systems.

In L2 and L3 use cases, radar is actually the dominant sensor type because it offers the best combination of size, cost and performance attributes.

Crucially, radar performs 4D sensing: with a single shot, it can measure the range, velocity, angle and elevation of an object from which its millimetre-wave pulse is reflected. A radar sensor also operates in conditions, such as rain, fog, and snow, which impair or disable the operation of lidar sensors and visual cameras.

Higher performance, greater integration

Automotive radar systems under development will, in time, make today’s radar technology appear blunt and limited in comparison. Today, a radar sensor mounted in the front bumper does an excellent job of measuring the distance to a single vehicle in front and its speed.

A full highway autopilot system, however, will need to be able to operate safely on the Autobahn in Germany, where a motorbike, for example – smaller and so harder to detect than a passenger car – can approach on the outside lane at speeds higher than 180 km/h. To provide early and accurate detection of such a hazard, an autopilot’s radar system therefore needs to sense more precisely, faster and at longer range.

Developing these capabilities while staying within the automotive industry’s tight constraints on size and cost calls for innovation in semiconductor technology, RF system operation and signal processing – fields in which Analog Devices excels.

At Analog Devices, a new generation of radar components, including 76 GHz to 81 GHz monolithic microwave IC (MMIC) transmitters and receivers, is based on a new Drive360 28 nm CMOS technology platform. Marking a departure from the industry’s conventional use of SiGe semiconductor technology for radar, the Drive360 platform provides valuable advantages including:

• High output power and low return noise for detection of objects at a longer range.

• Low phase noise and high intermediate frequency (IF) bandwidth, giving ultra-high precision for the detection of small objects such as motorbikes and infant pedestrians, which before would have been hard for a radar sensor to see.

• High-performance phase modulation, enabling the radar sensor to discriminate more effectively between multiple objects in a scene.

• Ultra-fast pulse transmission, giving a faster response to fast moving objects such as a motorbike advancing at 180 km/h.

The use of CMOS technology also supports a hih level of integration of digital functions in radar devices, helping to reduce the cost and size of advanced radar systems. Core Analog Devices’ intellectual property in functions such as over-sampled analog-to-digital converters and ultra-low noise digital PLL clocks helps to increase the speed of operation, resolution and stability of next-generation 77 GHz radar sensors.

A combination of advanced semiconductor technology, analog expertise and system software capability will enable radar technology to extend the capabilities of ADAS deployed in the next generation of vehicles. And Analog Devices will remain at the heart of the development of radar now and into the next decade.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Fro the editor's desk: AI – a double-edged sword
Technews Publishing News
As with any powerful tool, AI presents challenges, some of which, if not carefully managed, threaten to undo the potential that it can offer.

Read more...
Global semiconductor sales increase
News
The Semiconductor Industry Association (SIA) has announced global semiconductor sales were $57,0 billion during the month of April 2025, an increase of 2,5% compared to the March 2025.

Read more...
Avnet Abacus announced new president
Avnet Abacus News
Avnet Abacus has announced that Mario Merino will succeed Rudy Van Parijs as president of Avnet Abacus, effective 1 July 2025.

Read more...
Avnet Abacus wins multiple prestigious awards
Avnet Abacus News
The awards from Molex recognise outstanding performance, collaboration, and significant growth in the challenging market conditions of 2024.

Read more...
Bringing Bluetooth Channel Sounding to automotive and beyond with KW47
Altron Arrow Telecoms, Datacoms, Wireless, IoT
NXP’s new Channel Sounding-certified KW47 and MCX W72 wireless MCUs are set to help automakers with distance measurement, bringing an additional ranging solution for car access and autonomous systems, and will be utilised across a broader spectrum of applications.

Read more...
Wi-Fi 6 and Bluetooth LE coprocessor module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The ST67W611M1 from STMicroelectronics boasts an all-in-one design which, together with its capabilities, contribute to making it an attractive choice for IoT edge devices requiring a single-chip solution.

Read more...
Wi-Fi 6 plus Bluetooth LE SoC
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Silicon Labs’ SiWx917M SoC is the company’s lowest power Wi-Fi 6 SoC, ideal for ultra-low power IoT wireless devices using Wi-Fi, Bluetooth, Matter, and IP networking for secure cloud connectivity.

Read more...
Simple battery charger ICs for any chemistry
Altron Arrow Editor's Choice Power Electronics / Power Management
The LTC4162 is a highly integrated, high voltage multi-chemistry synchronous monolithic step-down battery charger and PowerPath manager with onboard telemetry functions and optional maximum power point tracking.

Read more...
Microchip enhances TrustMANAGER platform
Altron Arrow DSP, Micros & Memory
Firmware over-the-air updates and remote cryptographic key management provide scalable solutions for addressing IoT security challenges.

Read more...
Adaptive optics’ power solution
Altron Arrow Opto-Electronics
Vicor power-dense adaptive optical modules enable colossal telescopes to look into the past for deep space discoveries.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved