DSP, Micros & Memory


TDK introduces a high-speed TMR front-end IC

23 November 2022 DSP, Micros & Memory

TDK Corporation has complemented its existing TMR sensor portfolio with the new Micronas signal-conditioning IC, ASA 2310, for high-speed automotive and industrial electric motor applications. ASA 2310 is a low-drift, low-noise, customer-programmable TMR front-end IC with differential or single-ended SIN/COS inputs and analog outputs. Although samples of ASA 2310 are now available, the start of production is only planned for the end of 2023.

The ASA 2310 is designed to interface the high-precision analog TMR sensors of the TAS family. The sensors, powered and monitored by the ASA 2310, detect magnetic-field direction in the x-y plane, and provide a SIN/COS analog voltage output which is used as input for the ASA 2310. The sensor interface and signal conditioning of the ASA 2310 are optimised for the TMR-Bridge signals.

Major characteristics like gain, offset, (absolute) 0-angle, and orthogonality can be adjusted using the integrated signal path by programming the non-volatile memory of the IC. The different coarse gain settings ensure that the device can support various TMR full- and half-bridges from TDK. The amplified single or differential ended output signals of the ASA 2310 can be used to calculate the rotation angle of a magnet with very high accuracy by an external ADC combined with an ECU.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Avnet Abacus announced new president
Avnet Abacus News
Avnet Abacus has announced that Mario Merino will succeed Rudy Van Parijs as president of Avnet Abacus, effective 1 July 2025.

Read more...
Avnet Abacus wins multiple prestigious awards
Avnet Abacus News
The awards from Molex recognise outstanding performance, collaboration, and significant growth in the challenging market conditions of 2024.

Read more...
Redefining entry-level MCUs
NuVision Electronics DSP, Micros & Memory
The company positions the GD32C231 series as a ‘high-performance entry-level’ solution designed to offer more competitive options for multiple applications.

Read more...
Microchip enhances TrustMANAGER platform
Altron Arrow DSP, Micros & Memory
Firmware over-the-air updates and remote cryptographic key management provide scalable solutions for addressing IoT security challenges.

Read more...
Hirose Electric’s push-on bayonet lock connectors
Avnet Abacus Interconnection
Hirose Electric’s HR22K Series is a compact, waterproof, and oil-resistant connector designed for demanding industrial environments.

Read more...
MCU for low-power, IoT applications
NuVision Electronics DSP, Micros & Memory
Silicon Labs recently announced the PG26, a general-purpose microcontroller with a dedicated matrix vector processor to enhance AI/ML hardware accelerator speeds.

Read more...
EEPROMs for industrial and military markets
Vepac Electronics DSP, Micros & Memory
Designed to ensure the data retention and the secure and safe boot of digital systems, the memory product line includes small and medium density EEPROMs from 16 kb to 1 Mb.

Read more...
PLCnext – Open, IIoT-ready industrial platform
IOT Electronics DSP, Micros & Memory
PLCnext can be used alongside an existing PLC system, collecting control system data via EtherNet/IP, PROFINET, or MODBUS, and can push this information to a cloud instance.

Read more...
ICs vs modules: Understanding the technical trade-offs for IoT applications
NuVision Electronics Editor's Choice DSP, Micros & Memory
As the IoT continues to transform industries, design decisions around wireless connectivity components become increasingly complex with engineers often facing the dilemma of choosing between ICs and wireless modules for their IoT applications.

Read more...
Hardware quantum resistance to embedded controllers
Avnet Silica DSP, Micros & Memory
To help system architects meet evolving security demands, Microchip Technology has developed its MEC175xB embedded controllers with embedded immutable post-quantum cryptography support.

Read more...