Editor's Choice


How ADI battery management solutions empower safer, smarter robots

31 October 2024 Editor's Choice Power Electronics / Power Management

Choosing an appropriate battery pack and its accompanying battery management system (BMS) is a critical decision in designing an autonomous mobile robot (AMR).

Choosing an appropriate battery pack and its accompanying battery management system (BMS) is a critical decision in designing an autonomous mobile robot (AMR). In tightly integrated settings like factories and warehouses, where every second of operation matters, ensuring the safe and reliable functioning of all components is of utmost importance.

BMS solutions can provide accurate measurements on the charging and discharging of the batteries, which maximises the usable capacity. Additionally, the precise measurements allow for an exact calculation of the state of charge (SoC) and depth of discharge (DoD), which are essential parameters to allow smarter workflows of mobile robots. Equally important are the safety aspects of such systems, and it becomes crucial to consider BMS technologies that provide both overcharge protection and overcurrent detection when selecting systems for these applications.

What are battery management systems?

A BMS is an electronic system that can be used to closely monitor various parameters of a battery pack and/or its individual cells. It is critical for achieving the maximum usable capacity of the batteries, while ensuring safe and reliable operation. An efficient system can not only optimise the usable capacity of the battery in a safe manner, but also provide the engineers with valuable parameters such as the cell voltage, SoC, DoD, state of health (SoH), temperature, and current, all of which can be used to get the best performance out of a system.

What Are SoC, DoD, and SoH, and why are they important for AMRs?

SoC, DoD, and SoH are a few of the common parameters used in BMS to determine if the system is healthy, and provide early fault detection, cell aging, and the remaining time of operation.

SoC stands for state of charge and can be defined by the level of charge of a battery in relation to its total capacity. SoC is usually expressed as a percentage from 0 to 100.

SoH can be defined by the maximum capacity (Cmax) of the battery that can be released relative to its rated capacity (Cmax).

DoD or depth of discharge is the opposite metric of SoC, and is defined by the percentage of the battery that has been discharged (Creleased) relative to its rated capacity.

How are those relevant for an AMR solution?

The SoC of a battery varies according to the battery architecture, nonetheless, it is necessary to have a precise system to measure the state of a battery. Two main types of commonly used batteries are Li-Ion and lead acid batteries. Each has its pros and cons, with various subcategories. In general, Li-Ion batteries are considered a better choice for robots because they offer:

• More energy density, which could be in the order of eight to 10 times the energy density of a lead acid battery.

• Li-Ion batteries are lighter than lead acid batteries of the same capacity.

• Charging a lead acid battery takes longer than charging a Li-Ion battery.

• Li-Ion batteries offer an extended life cycle, allowing for a significantly higher number of charge cycles.

However, these advantages come with a higher cost, and pose certain challenges that need to be addressed to fully realise their performance benefits.

To better explain this in a real-life application, it is possible to analyse the plot in Figure 1, which compares the DoD of a lead acid battery and a Li-Ion battery. It can be observed that the pack voltage varies minimally for a Li-Ion battery while going from 0% DoD to 80% DoD. 80% DoD is usually the lower limit for Li-Ion batteries, and anything below that can be considered a dangerous level.

However, because the pack voltage on a Li-Ion battery shifts only minimally for the usable range, even a minor measurement error could lead to a substantial decrease in performance.

For LiFePo4 batteries, the usable range can vary, but it is a good rule of thumb to consider that the minimum SoC is at 10%, and the maximum is at 90%. Anything below the minimum level can cause an internal short circuit on the battery, and charging above 90% reduces the lifetime of these batteries.

Natural degradation also plays an important role in battery health as, with time, the maximum SoC of a battery will degrade (Figure 2), hence why a precise measurement of the cells is the best way of keeping performance at an optimal level, even after natural degradation.

Monitoring all the parameters and precisely controlling the usage of the battery is the best way to extend the lifecycle and take advantage of every single unit of charge.

How can ADI’s BMS solutions increase productivity and solve problems?

The precision of battery management significantly enhances the efficiency of batteries by precisely measuring the cells, allowing for more accurate control and estimation of the SoC across various battery chemistries. Measuring each cell individually ensures safe monitoring of battery health. This precise monitoring facilitates balanced charging, preventing cells from overcharging and discharging. Additionally, synchronous current and voltage measurements increase the accuracy of the acquired data. Extremely fast overcurrent detection allows for quick failure detection and emergency stops, ensuring safety and reliability.

The ADBMS6948 provides all the key specs required for mobile robots, but a few critical specs with BMS design considerations for a mobile robot are:

• Small total measurement error (TME) over a lifetime, (–40 to 125°C).

• Simultaneous and continuous measurement of cell voltages.

• Built-in isoSPI interface.

• Hot-plug tolerant without external protection.

• Passive cell balancing.

• Low-power cell monitoring (LPCM) for cell and temperature monitoring in keyoff state.

• Low sleep mode supply current.

In summary, we can conclude that BMS can not only increase the overall performance of the system by allowing every parameter to be precisely controlled, but also reduce cost. In an evolving manufacturing environment that is becoming more and more automated and is seeking the extra percentage of performance on its mobile robots, precisely controlling and managing assets becomes essential.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

20 years of precision, progress and purpose – the Jemstech journey
Jemstech Editor's Choice Manufacturing / Production Technology, Hardware & Services
Twenty years ago, Jemstech began as a small, determined venture built on technical excellence and trust. Today, it stands among South Africa’s leading electronic manufacturing service providers.

Read more...
A new era in wire bond inspection
Techmet Editor's Choice Manufacturing / Production Technology, Hardware & Services
Viscom is developing a 3D wire bond inspection system that incorporates substantially improved sensors, a high image resolution, and fast image data processing.

Read more...
Energy harvesting using a battery-less IoT system
NuVision Electronics Editor's Choice Power Electronics / Power Management
Energy Harvesting plays an essential role in the foundation of ambient IoT, a new generation of ultra-low power connected devices that operate by drawing energy from their environment instead of relying on traditional batteries.

Read more...
Converter power modules for 48 V networks
Altron Arrow Power Electronics / Power Management
The economic and quality-of-life benefits of electrification is driving the adoption of HV to 48 V DC-DC conversion across many markets with 48 V power modules becoming more common.

Read more...
Questing for the quantum AI advantage
Editor's Choice AI & ML
Two quantum experts disclose high hopes and realities for this emerging space.

Read more...
How a vision AI platform and the STM32N6 can turn around an 80% failure rate for AI projects
Altron Arrow AI & ML
he vision AI platform, PerCV.ai, could be the secret weapon that enables a company to deploy an AI application when so many others fail.

Read more...
Memory for asset tracking
Altron Arrow DSP, Micros & Memory
The Page EEPROM, ST’s latest memory, has been designed for efficient datalogging and fast firmware upload/download in battery-operated devices.

Read more...
From the editor's desk: Progress meets reality
Technews Publishing Editor's Choice
In the first half of 2025, renewable energy, incorporating solar, wind, and to a lesser degree hydropower and bioenergy, has generated more electricity globally than coal did.

Read more...
Microchip and AVIVA Links collaboration
Altron Arrow News
Microchip and AVIVA Links have achieved groundbreaking ASA-ML interoperability, accelerating the shift to open standards for automotive connectivity.

Read more...
Expanded STM32WL3x line for IoT sensors
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WL31x and STM32WL30x are more tailored versions of the STM32WL33x for designers who wish to focus on specific features, while lowering their bill of materials.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved