mobile | classic
Dataweek Electronics & Communications Technology Magazine





Follow us on:
Follow us on Facebook Share via Twitter Share via LinkedIn


Search...

Electronics Buyers' Guide

Electronics Manufacturing & Production Handbook 2017


 

It’s not about the board
15 November 2017, This Week's Editor's Pick, Computer/Embedded Technology, Design Automation

It might sound controversial, but choosing the best board for a project shouldn’t start with a comparison of different boards and appraising the features and benefits. With such a wealth of development boards on the market, it can be easy for designers, especially makers and hobbyists, to become overwhelmed by choice.

Ankur Tomar
Ankur Tomar

It’s easy to become distracted by exciting new features and functionality or be tempted to choose the newest product on the market as an excuse to try it out. From a designer’s perspective the ‘best’ board for a project will differ depending on a few factors.

Engineers, makers and hobbyists all want their project to succeed but their resources and motivations are different and this will have an effect on the board they choose. Professional engineers have significant pressure to deliver a successful product that meets a clearly defined specification. As they have a clear definition of the functionality required at the start of the project, their development board choice is typically performance driven and therefore the initial board criteria are defined by the processor. Dependent upon the application scenario, these designers look for a board that can deliver the performance they need by including the processor running at a sufficiently high clock speed, the memory needed by the application and any other required components, such as GPUs, etc.

Professional engineers are also motivated by time, as the end product needs to be developed quickly. These designers are likely to choose a board that is from a processor family that they have experience with, unless the specification of the project determines otherwise, as this allows them to utilise existing libraries and tool chains that they are familiar with. Changing processor families may require hiring additional staff if this knowledge is not already available in-house. This takes time, not to mention adding significant cost, but this may prove to be the best course of action if the project and product specification demand it.

Secondary to the processor specification, but also important, is the board functionality. Typically, professional designers will choose to develop custom hardware to meet the needs of their application, making an open source board a more attractive choice, as it’s easier to customise and modify the hardware as needed.

Availability of sample code is less of a concern for professional engineers than it is for makers and hobbyists. They have a level of knowledge and experience that affords them the ability to write more code for their applications, and they will not usually rely on sample application code to use as a basis for their system. If, however, the application needs to run a specific operating system the developer will want to use a board with support for that OS, which may rule out choices that would otherwise meet the requirements.

Last but not least, professional designers assess whether support is available for the programming language and toolchain that their company uses. Changing the toolchain can add significant time to the project, as well as requiring the purchase and implementation of new development tools.

The path a professional engineer takes when choosing a board is therefore to initially select the processor, any additional functionality that is required, and then ensure the software development environment is suitable. This approach is the same for designers whether they are designing washing machines or high-end control and automation systems.

For makers and hobbyists, the decision-making process is still equally as important, but less commercially or time pressured. Makers can find it harder to choose a board as, generally speaking, they have less experience and require more support. Makers who develop startup businesses often look to the design and development community to get a sense of product viability from similar projects to their own, and then assess performance, the opportunity for optimisation and cost when choosing a development board.

Makers and hobbyists tend to choose a board that has a strong user community, particularly boards that their peers have successfully used in similar applications. This is because they typically get their support from the community, rather than directly from a manufacturer. Professional makers also adopt this approach, although they are often able to obtain support from manufacturers and tend to be less concerned about picking a board that has been used in similar applications. The availability of drivers for the peripherals on the board can also be a big deciding factor for professional makers and hobbyists, because of the time and expertise that would be required if they wrote the code themselves.

Hobbyists often base their choice of board on the connectivity and functionality available: this makes products such as the Raspberry Pi, which has a vast range of peripherals available as ‘Hats’, very popular in this market. This is in contrast to professional makers who, generally speaking, look at performance, memory and optimisation as main criteria when choosing a board. Cost is also still an important factor for both hobbyists and makers, but as the price of single board computers has reduced over time, the variety in board choice has increased.

Support for particular software toolchains is not so much of a concern for non-commercial projects, although the availability of free development tools is a major factor. This means development boards, such as those in the Arduino family, are popular amongst makers and hobbyists as they come with an easy-to-use IDE.

IoT has expanded the possibilities for projects and fired up the imagination of professional makers and hobbyists alike, providing more opportunities for new designs than ever before. Although the technology behind the IoT is nothing new, the age of connecting all devices and the widespread use of sensors is new and everyone wants in on the action. Rewinding 10 years, wireless connectivity and encrypted sensors were not mainstream but now this connected ecosystem is building incredibly fast.

For designers looking for a board this is a gift, as all the functionality needed for many IoT nodes exists on a small module or sometimes even on a single chip. This eliminates the need to design everything from scratch, allowing developers with no hardware expertise to create products without the need to design complex circuits. The software to enable the communication is also freely available. For makers, this makes life much more simple, saving time and allowing them to concentrate on the product’s functionality and high-level communication between modules, rather than writing low-level code to run, for example, Bluetooth Low Energy (BLE), Wi-Fi or a TCP/IP stack.

Now we can understand that designers take a different approach to selecting boards depending on their project needs. It’s clear to see that choosing a board is not as hard as it first seems, provided the designer understands the scope of their project. The varying requirements of different users, however, means that it is essential for distributors to offer a wide range of boards to meet all customers’ needs.

Some boards have been designed to meet specific application requirements, primarily for professional engineers. For example, the Intel tinyTILE is a low-power board that measures just 35 x 26 mm and includes a six-axis combo sensor so it’s clearly been designed for wearable and other small, battery powered applications.

Sometimes the decision on which board to choose is more difficult, particularly when comparing families, such as Arduino and BeagleBone. Both are open-source platforms that offer a range of processor and expansion boards (with Arduino expansion boards are called ‘shields’, while the BeagleBoard.org Foundation uses ‘Capes’). The availability of Capes and shields enables a significant reduction in development time. It’s possible that, if cost and performance are not critical, for example if a maker expects to only produce one or two systems, or a professional engineer is designing a proof of concept, then having the right peripherals available on an off-the-shelf expansion card will be a key factor in any decision.

Both the Arduino and BeagleBone families offer open-source operating systems to run on the board, open-source IDEs and the hardware is also open source, so schematics for the boards are available. Both families are also supported by a range of commercial toolchains, therefore software is unlikely to have a significant influence on the family chosen.

Although not built into the specifications, the performance of Arduino boards tends to be less than that of BeagleBone. For example, most

Arduino products use the AVR family of processors, which offer far lower performance than the 1 GHz ARM processor used on the latest BeagleBone Black. Professional engineers will make an initial selection based upon performance; hobbyists might be more attracted by the lower cost of AVR-based Arduino products.

If a user has little or no experience of one of the board families and doesn’t want to use a particular processor family, it’s likely that processor performance will dictate which board is chosen. This is either because of the performance needed or the impact on cost of the higher performance inherent in the BeagleBone family. The situation isn’t totally clear-cut, however, with some Arduino boards running RISC processors at several hundred MHz.

Although hobbyists, makers and professional engineers have very different criteria for choosing a board, they all use a logical process when making a selection. The good news is that, with more and more boards being released, users from hobbyists to professional engineers will have the luxury of being able to choose from an ever-increasing number of products that meet their particular needs.

For more information contact Farnell element14, 0800 111 057, info-za@farnell.com, http://export.farnell.com/welcome-south-africa


  Follow us on Facebook Share via Twitter Share via LinkedIn    

Further reading:

  • What are my IoT data transport options?
    15 November 2017, Otto Wireless, This Week's Editor's Pick, Telecoms, Datacoms, Wireless
    There are three main factors to consider when deploying a wireless IoT sensor or controller: power, range (network coverage) and speed.
  • Addressing safety concerns with Li-ion batteries
    15 November 2017, Uniross Batteries, This Week's Editor's Pick, Power Electronics / Power Management
    Lithium-ion is safe but with millions of consumers using batteries, failures are bound to happen.
  • Production cycle of a sealed lead-acid battery
    15 November 2017, Forbatt SA, This Week's Editor's Pick, Power Electronics / Power Management
    It’s easy when commissioning or simply plugging a battery into the device it is destined for, to overlook all the steps that went into its production. Often the minerals that are used in making a battery ...
  • From the chairman’s desk: Q3 in South Africa
    11 October 2017, AREI, This Week's Editor's Pick, News
    Warren Muir, chairman of AREI, provides an update on how the local electronics sector is doing, and some of the Association’s latest happenings.
  • Enabling intelligent energy supply via the smart grid
    11 October 2017, EBV Electrolink, This Week's Editor's Pick, Power Electronics / Power Management
    As the worldwide energy supply model is experiencing a trend towards decentralised supply concepts, smart grids allow the challenges of climate change and liberalised electricity markets to be met.
  • The importance of test structures for multilayer PCBs
    11 October 2017, EDA Technologies, This Week's Editor's Pick, Manufacturing / Production Technology, Hardware & Services
    As the number of layers in multilayer PCBs grow and the size of features become smaller and denser, the opportunities for a PCB to be built incorrectly grows exponentially. Traditional bare board PCB ...
  • Laser soldering for ultrafine parts or high density mounting
    11 October 2017, This Week's Editor's Pick, Manufacturing / Production Technology, Hardware & Services
    Laser soldering is currently gaining attention as a new soldering method. However, as this is a new industrial technique compared to iron tip soldering, the heating principles differ, and it cannot simply ...
  • XJTAG updates boundary scan software
    11 October 2017, ASIC Design Services, Test & Measurement, Design Automation
    XJTAG has launched a major update to its flagship software, XJDeveloper. XJTAG’s unified test and programming IDE, XJDeveloper, is a development and debug environment that makes it quick and easy to set ...
  • Selecting test instrumentation for battery temperature profiling
    11 October 2017, Concilium Technologies, This Week's Editor's Pick, Test & Measurement
    Charge and discharge currents increase the temperature of batteries and temperature directly affects their lifespan and storage capacity. Batteries tend to be efficient and provide a normal life span ...
  • DLP display evaluation module
    11 October 2017, EBV Electrolink, Opto-Electronics, Design Automation
    Texas Instruments has opened the door for developers to implement high-performing DLP (Digital Light Processing) display technology with virtually any low-cost processor. The new 0,2” DLP2000 chipset ...
  • Effort required to manage ICT e-waste
    13 September 2017, Arrow Altech Distribution (AAD), This Week's Editor's Pick, News
    Arrow Value Recovery Services specialises in reducing the environmental impact of e-waste by recycling ICT products through lifecycle programmes that recondition and return them to the business ICT stream.
  • Op-amp balancing resistors are not a given
    13 September 2017, Arrow Altech Distribution (AAD), This Week's Editor's Pick, Analogue, Mixed Signal, LSI
    Analog Devices’ Harry Holt explains why balancing resistors are not always a given, the way they were in the days of the old 741 op-amp.

 
 
         
Contact:
Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronic Buyers Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Other
Terms & conditions of use, including privacy policy
PAIA Manual





 

         
    Classic | Mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.