Telecoms, Datacoms, Wireless, IoT


Implementing a fibre-optic link

18 May 2005 Telecoms, Datacoms, Wireless, IoT

There are many benefits in using fibre-optics as a data transmission medium rather than copper cable. In this article, using the example of a fibre-optic system for CCTV, David Archer, the technical manager of Fiber Options (Europe) takes a close look at the optical loss budget, the system tests and commissioning, and performs a cost comparison between fibre and copper.

The optical loss budget

It may seem odd to be carrying out the loss budget calculations at a late stage in the design process of the installation, but in fact this can only be achieved with any accuracy once the complete cabling infrastructure has been defined. The objective is to calculate the worst-case link path loss (usually the longest) and ensure that the chosen transmission equipment has adequate performance to cover this with a reasonable margin in hand.

This is quite simple, and merely involves adding together the dB losses of all the components in the link, including fibre attenuation (dB/km x length in km), plus both connector and splice losses. The greatest difficulty is often simply one of gleaning the relevant loss figures from a sheath of manufacturer's data sheets; the 'rule-of-thumb' values listed in Table 1 may be helpful in this respect. Note that where the system uses two wavelengths simultaneously on the same fibre, eg, for single fibre video and PTZ (pan-tilt-zoom) transmission, the higher attenuation figures should be used for loss budgeting purposes.

Table 1. Typical loss budget parameters
Table 1. Typical loss budget parameters

Depending on the outcome of this exercise, it may be necessary to re-evaluate the chosen transmission hardware in order to accommodate the predicted path losses. For example, it may be necessary to specify equipment with enhanced optical performance, or failing that, consider a change of wavelength to lower loss transmission window.

System tests and commissioning

Most fibre-optic installers will provide optical test results for the installed fibre-optic infrastructure. As an absolute minimum this should consist of optical power-through measurements for each terminated fibre path - this is equivalent to a continuity test on a conventional copper system using an electrical multimeter. This will be expressed as a path loss in dB, and can be directly compared with the specified performance of the chosen transmission equipment. It is normal to provide a minimum loss margin (equipment capability minus actual loss) of 3 dB, in order to allow for the inevitable ageing process that occurs in the fibre-optic link, particularly in the fibre-optic transmitter.

Many installers also provide OTDR test traces - these are best described as a graphical record of each fibre attenuation, which can be stored for later comparison or analysis. OTDR traces can provide invaluable information, but nevertheless should be regarded as supplementary to, rather than a substitute for, power-through loss measurements. This is because the information they provide is difficult for non-specialists to interpret and can easily be flawed by obscure fibre effects, and is of only limited accuracy.

Under normal circumstances, only minimal system commissioning should be required, assuming that the fibre-optic receivers feature automatic gain control (AGC), thus eliminating any need for manual gain control adjustments

Cost comparison - fibre versus copper

The cost of implementing fibre-optic networks has fallen dramatically over the past few years, so that it is at long last possible to provide meaningful cost comparisons with other transmission media, such as twisted pairs or coaxial systems.

Until such time as cameras and monitors are supplied with both BNC coax connectors and 'ST' optical connectors, fibre-optic links will always be at a price disadvantage due to the cost of providing the external transmission components. This is particularly so for very short links where the cost of the transmission equipment is a large proportion of the total. For links in excess of a few hundred metres, however, fibre-optic systems become increasingly attractive as the cost of providing coax systems increases disproportionately, either due to the cost of providing premium quality cable, or line-amplifiers, or both. This is illustrated in Figure 1.

Figure 1. Cost comparison, fibre vs coax
Figure 1. Cost comparison, fibre vs coax

Thus, there is always a link length, probably between 500 and 1000 metres, beyond which a fibre-optic CCTV network can be justified on cost grounds alone. If the average length is much shorter than this, and your sole criteria for the selection of a transmission medium is minimum cost, then fibre-optics is unlikely to appeal. On the other hand, if other factors such as picture quality, freedom from interference, and vastly-reduced maintenance are also important, then you would do well to consider using fibre in your system.

Elvey Security Technologies is the sole recognised distributor of Fiber Options transmission equipment in South Africa.

For more information contact Elvey Security Technologies, +27 (0)11 401 6700, sales@elvey.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Compact, durable and wideband wireless performance
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The Taoglas Metal Stamped MPA Series of antennas is engineered to meet the growing demands of modern wireless devices that require high performance in increasingly compact form factors.

Read more...
Ultra-low-power SDR tuner
Telecoms, Datacoms, Wireless, IoT
CML Micro has announced the launch of the CMX918, an advanced, ultra-low-power, multi-mode Software-Defined Radio (SDR) tuner designed to significantly extend battery life in portable, embedded, and always-on radio applications.

Read more...
Multiprotocol wireless System-on-Chip
Telecoms, Datacoms, Wireless, IoT
The nRF54LM20B from Nordic Semiconductor is a multiprotocol wireless SoC designed for demanding designs in Bluetooth devices used in smart homes and industrial applications.

Read more...
What does Wi-Fi 7 mean for South African networks?
Telecoms, Datacoms, Wireless, IoT
With Wi-Fi 7 (802.11be), we are finally looking at a standard that was built, not just for more devices, but for the new way networks are used.

Read more...
Quectel introduces tri-band MCU Wi-Fi 6E module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Supporting operation across the 2,4 GHz, 5 GHz, and 6 GHz bands, the FGMC63N delivers true tri-band capability in a compact, integrated design.

Read more...
u-blox redefining what’s possible
RF Design Telecoms, Datacoms, Wireless, IoT
u-blox achieved what was once thought impossible with the launch of the DAN-F10N, the industry’s smallest and most reliable L1, L5 dual-band GNSS antenna module.

Read more...
Channel sounding on Bluetooth module
Avnet Silica Telecoms, Datacoms, Wireless, IoT
The latest Bluetooth module from Panasonic Industry provides excellent performance and minimal power consumption.

Read more...
Multiprotocol SoC
RF Design Telecoms, Datacoms, Wireless, IoT
The nRF54LM20A from Nordic Semiconductor is a multiprotocol wireless System-on-Chip designed for demanding wireless Bluetooth designs.

Read more...
TDK launches DRIVE
Avnet Abacus Telecoms, Datacoms, Wireless, IoT
TDK launches DRIVE, a platform designed to unlock control-grade accuracy for advanced vehicle platforms without perception sensors.

Read more...
High-performance Wi-Fi and Bluetooth module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The FCU741R is a high-performance Wi-Fi 4 module launched by Quectel, supporting 2,4 and 5 GHz frequencies which can be used for WLAN connection.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved