Passive Components


Using a PTC thermistor for degaussing

28 February 2001 Passive Components

To minimise picture distortion and beam landing error (colour impurity), the shadow mask and associated metal parts of a CRT tube must be demagnetised at switch on. This is done by passing decaying AC through the degaussing coil. An alternating magnetic field is generated which gradually decays to demagnetise the tube.

BC Components says that by implementing its dual positive temperature coefficient (PTC) thermistor in the degaussing circuit, a significant improvement of picture quality can be achieved.

Connecting a PTC thermistor (mono PTC housed or leaded) in series with the AC mains and degaussing coil; as in Figure 1, is the simplest method of producing the required decaying current. At switch on, the PTC thermistor is cold and has low resistance, so a large inrush current flows through the degaussing coil. As both the temperature and, therefore, the resistance of the PTC thermistor increase, the current and magnetic field decay. The PTC temperature stabilises after a few minutes, leaving a small alternating residual current flowing through the degaussing coil.

Figure 1. Mono PTC arrangement
Figure 1. Mono PTC arrangement

Degaussing with dual PTC thermistors

To avoid picture distortion with large-screen television and high-resolution colour monitors, it is crucial that the residual current and hence the residual magnetic field, be as low as possible. A dual PTC thermistor in the degaussing circuit can achieve this.

The degaussing PTC is connected in series with the degaussing coil; see Figure 2. The heater PTC, with a higher R25 resistance (resistance at 25°C), is in parallel with the main supply. At switch on, the inrush current through the degaussing coil is high, raising the temperature and resistance of the degaussing PTC. The temperature of the heater PTC also increases and its heat is dissipated towards the degaussing PTC. This further increases the degaussing PTC resistance, so further reducing the residual current.

Figure 2. Dual PTC arrangement
Figure 2. Dual PTC arrangement

To maximise this heating effect and thereby minimise the residual current, the two thermistors are carefully matched and clamped in close thermal contact inside a PBTP (polybutyleneteraphthalate) case. The plastic composition of the case is self-extinguishing in accordance with UL94.V.0.

Further advantages can be obtained by using double mono PTC thermistors. This consists of a parallel combination of two degaussing PTC thermistors in one standard BC Components 3-pin housing. This component offers substantial benefits compared to a single PTC degaussing thermistor. Inrush currents can be higher than with normal dual or mono degaussing PTC thermistors and by doubling the normal ceramic volume, a smoother decay is obtained.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

SMD varistors with huge surge current capability
Electrocomp Power Electronics / Power Management
TDK Corporation has introduced two new varistor series in SMD design, the larger of the two capable of handling a surge current of 10 000 A.

Read more...
Inductor supports temperatures up to 150°C
RS South Africa Passive Components
TDK has launched a highly durable inductor for automotive A2B applications that supports a wide temperature range of -55 up to 150°C.

Read more...
Long-range passive infrared motion sensor
Future Electronics Passive Components
Panasonic Industry (PaPIRs) recently introduced he world’s most compact long-range passive infrared motion sensor, for installation heights of up to 15 metres.

Read more...
Isolated solid state relay
Altron Arrow Passive Components
The ISO808, ISO808-1 (PowerSO-36) and ISO808Q, ISO808Q-1 (TFQFPN32) are galvanic isolated eight-channel drivers featuring a low supply current.

Read more...
Low-profile power inductors
RS South Africa Passive Components
TDK Corporation has announced the introduction of its new PLEA85 series of high-efficiency power inductors developed for battery-powered wearables and other devices.

Read more...
Miniature capacitor for automotive applications
Avnet Abacus Passive Components
Murata has released its LLC series of multi-layer ceramic capacitors for automotive applications, that feature a reversed termination for low ESL.

Read more...
Sealed tantalum capacitors
Electrocomp Passive Components
With an operating temperature range of -55 to 125°C, with voltage derating, these capacitors have been designed especially for avionics and aerospace applications.

Read more...
Double metallised polypropylene capacitors
Future Electronics Passive Components
The Electrocube 985B series offers high-frequency operation, high current and low ESR in a miniature package.

Read more...
Analogue front end for sensor measurements
Electrocomp Analogue, Mixed Signal, LSI
The NJU9103 AFE from Nisshinbo is a tiny analogue front end, with a 16-bit resolution ADC and up to 512 x signal amplification from the programmable gain amplifier.

Read more...
New series of chip-type capacitors
Electrocomp Passive Components
Panasonic Industries’ SMT capacitor series all benefit from the longest lifetime plus the lowest ESR values currently available.

Read more...