Analogue, Mixed Signal, LSI


The top benefits of MEMS timing

29 May 2020 Analogue, Mixed Signal, LSI

MEMS (micro electromechanical systems), designed to resonate and generate clocks signals, may not dominate the world of timing applications right now, but the technology’s popularity is growing. Competing with the long-established timing technology based on quartz crystals, the emergence of MEMS comes with significant benefits.

Listed below are the top benefits provided by MEMS resonator-based timing products.

Miniaturisation

Based on silicon rather than quartz, MEMS technology offers a lower cost and more readily available path toward miniaturisation. MEMS devices take advantage of lithographic techniques, so there is not a practical limit to the size improvements. More specifically, the footprint size and frequency remain independent of one another, whereas a quartz crystal’s size is directly related to the device’s frequency.

Tiny crystals have frequency limits. For example, Abracon’s 1,2 x 1,0 mm ABM13W series has a 32 MHz to 80 MHz frequency range and the 1,6 x 1,2 mm ABM12W series ranges from 24 MHz to 52 MHz. In contrast, similarly small-sized (1,6 x 1,2 mm) MEMS devices deliver a frequency range from 1 MHz to 80 MHz. Frequencies below 24 MHz are common in power supply, wireless charging and connectivity applications.

Abracon’s 32,768 kHz ASTMKJ MEMS solution beats other state-of-the-art tuning fork crystal sizes with an even smaller 1,54 x 0,84 mm footprint. Additionally, Abracon’s latest MEMS family, including the AMPM and AMJM series, is available from 1 MHz to 100 MHz in miniature 1,6 x 1,2 mm, 2,0 x 1,6 mm, 2,5 x 2,0 mm and 3,2 x 2,5 mm package sizes.

Resistance to shock

We’re talking about high shock – like getting shot out of a cannon high shock. You might ask, “Who needs that?”

Immunity to high shock is not just necessary in projectiles. Applications such as industrial process monitoring, handheld power tools, transportation, drones and robotics experience routine exposure to shock and vibration. Any equipment at risk of falling, dropping, impacting repeatedly, crashing at high speeds and experiencing sharp turns or strong reverberations will benefit from MEMS.

The small resonator size means a MEMS device also has low mass, even when compared to a miniature quartz crystal. The small mass induces less force from acceleration and thus allows MEMS devices to keep on ticking.

Stability at wide temperature extremes

Wide temperature extremes, beyond -40°C to +85°C, must be tolerated by equipment in industrial, transportation, automotive and military applications. The stability of an uncompensated quartz crystal tends to diverge at cold and hot temperature extremes.

On the other hand, all MEMS require temperature compensation that will keep a device under control across temperature, even at the extremes. If you are looking for tight stability over a wide temperature range, MEMS timing may be a good option.

Non-standard frequencies

There are hundreds of common frequencies that almost all applications use. However, when a new frequency is required, cutting a quartz blank to the exact frequency may take many weeks of lead time.

During urgent projects, the programmability of MEMS can rescue engineers and help continue their designs. In the meantime, it is possible to pursue production using MEMS devices and then switch back to crystals for volume shipments. The strategy can be handy when accommodating new frequencies during the development and prototyping phase.

Applying technology in the right way, for the right reason, always solves challenges. In many applications, MEMS can provide a space saving option, resistant to shock, with better stability and convenience of quick-turn, non-standard frequencies.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Avnet Abacus announced new president
Avnet Abacus News
Avnet Abacus has announced that Mario Merino will succeed Rudy Van Parijs as president of Avnet Abacus, effective 1 July 2025.

Read more...
Avnet Abacus wins multiple prestigious awards
Avnet Abacus News
The awards from Molex recognise outstanding performance, collaboration, and significant growth in the challenging market conditions of 2024.

Read more...
High-reliability isolation amplifiers
EBV Electrolink Analogue, Mixed Signal, LSI
The VIA series of isolation amplifiers from Vishay are designed to deliver exceptional thermal stability and precise measurement capabilities.

Read more...
Mibbo QT2C Series signal isolators
Conical Technologies Analogue, Mixed Signal, LSI
The Mibbo QT2C Series isolators support a rich combination of input and output signals, working with either current loops or voltage levels.

Read more...
Hirose Electric’s push-on bayonet lock connectors
Avnet Abacus Interconnection
Hirose Electric’s HR22K Series is a compact, waterproof, and oil-resistant connector designed for demanding industrial environments.

Read more...
IMU with dual-sensing capability
EBV Electrolink Analogue, Mixed Signal, LSI
ST’s 6-axis inertial measurement unit integrates a dual accelerometer up to 320g and embedded AI for activity tracking and high-impact sensing.

Read more...
Plural data converter series
Analogue, Mixed Signal, LSI
Silanna Semiconductor has announced the launch of Plural, a new generation of data converters for customers eager to find a more available, affordable, high-performance alternative to existing brands.

Read more...
Precision JFET op-amp
Altron Arrow Analogue, Mixed Signal, LSI
The specifications of the ADA4620 make it optimal as a front-end amplifier in a data-acquisition system, or for a TIA circuit with high input impedance.

Read more...
A new era in modular I/O solutions
Rugged Interconnect Technologies Analogue, Mixed Signal, LSI
Aerospace and defence system designers are demanding scalable and high-performance I/O solutions and while traditional mezzanine standards have proven reliable, they often fall short of meeting modern bandwidth, size, and flexibility requirements.

Read more...
High voltage instrument op-amp
iCorp Technologies Analogue, Mixed Signal, LSI
The SGM621B is a high accuracy, high voltage instrumentation amplifier, which is designed to set any gain from 1 to 10 000 with one external resistor.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved