Electronics Technology


IoT communication without batteries

28 October 2020 Electronics Technology

When we talk about IoT, we often gloss over the fact that all these interconnected things need batteries and electronics to carry out the job of collecting and processing data while they’re communicating with one another; and many of the objects we would like to connect are made from plastic and do not have electronics embedded into them.

Now researchers at the University of Washington have devised a way of using 3D printed plastic to create objects that communicate with smartphones or other Wi-Fi devices without the need for batteries or electronics. It employs battery-less chips that transmit their bits by either reflecting or not reflecting a Wi-Fi router’s signals. With this kind of backscattering, a device communicates by modulating its reflection of the Wi-Fi signal in the space.

The challenge with existing Wi-Fi backscatter systems is that they require multiple electronic components, including RF switches that can toggle between reflective and non-reflective states, digital logic that controls the switch to encode the appropriate data, as well as a power source/harvester that powers all these electronic components.

The University of Washington team has leveraged this Wi-Fi backscatter technology to 3D geometry and created easy to print wireless devices using commodity 3D printers. To achieve this, the researchers built non-electronic and printable analogues for each of these electronic components using plastic filaments and integrated them into a single computational design.

The researchers are making their CAD models available to 3D printing enthusiasts so they can create their own IoT objects. The designs include a battery-free slider that controls music volume, a button that automatically orders more cornflakes from an e-commerce website and a water sensor that sends an alarm to your phone when it detects a leak. “We are using mechanism actuation to transmit information wirelessly from these plastic objects,” explains associate professor, Shyam Gollakota.

The researchers have leveraged mechanical motion to provide the power for their objects. For instance, when someone opens a detergent bottle, the mechanical motion of unscrewing the top provides the power for it to communicate data. “We translate this mechanical motion into changes in antenna reflections to communicate data,” said Gollakota. “Say there is a Wi-Fi transmitter sending signals. These signals reflect off the plastic object; we can control the amount of reflections arriving from this plastic object by modulating it with the mechanical motion.”

To ensure that the plastic objects can reflect Wi-Fi signals, the researchers employ composite plastic filament materials with conductive properties. These take the form of plastic with copper and graphene filings. “These allow us to use off-the-shelf 3D printers to print these objects but also ensure that when there is an ambient Wi-Fi signal in the environment, these plastic objects can reflect them by designing an appropriate antenna using these composite plastics,” he added.

Once the reflective material was created, the next challenge for the researchers was to communicate the collected data. The researchers ingeniously translated the 0 and 1 bits of traditional electronics by encoding these bits as 3D printed plastic gears. A 0 and 1 bit are encoded with the presence and absence of tooth on the gear, respectively. These gears reflect the Wi-Fi signal differently, depending on whether they are transmitting a 1 bit or a 0 bit.

“The way to think of it is that you have two parts of an antenna,” explained Gollakota. “As the gear moves, and depending on whether we are using a 0 bit or a 1 bit, we connect or disconnect the two disjointed parts of the antenna. This changes the reflections as seen by a wireless receiver.”

In this arrangement, the mechanical nature of many sensors and widgets are leveraged to power the backscatter design. “We have computational designs that use push-buttons to harvest energy from user interaction as well as a combination of circular plastic springs to store energy,” added Gollakota.

While the researchers envision a fairly broad commercial market for the technology, Gollakota suggested that e-commerce websites could tell how a user might be interacting with the objects they sell. This could send an alert that a container, for example, needs a refill. The researchers demonstrated a prototype of a detergent bottle that could report when it is empty. This technology could also be used in point-of-care medical situations, such as tracking when a pill bottle is opened or closed, or how much insulin-pen usage occurs.

Gollakota added: “We have showed that we can not only send wireless data, but also store information about how the object was used outside the wireless range, and this information can be uploaded by the push of a button when the person comes into the range of the base station.”




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Microchip’s new IC to replace Hall effect position sensors
Altron Arrow Electronics Technology
The LX34070 IC from Microchip is set to help accelerate the global move away from expensive and less accurate magnet-based solutions for safety-critical EV motor position monitoring.

Read more...
A brief history of HBTs
Conical Technologies Electronics Technology
In 1947 the engineers at Bell Labs were tasked with developing a transistor. This development heralded the beginning of the semiconductor industry which changed the world forever. Transistors would have ...

Read more...
Research project achieves major advance toward fusion energy
Electronics Technology
New superconducting magnet designed by MIT breaks magnetic field strength records, paving the way for practical, commercial, carbon-free power.

Read more...
Report forecasts impact of electrically conductive adhesives
Electronics Technology
IDTechEx recently published a market research report, ‘Electrically conductive adhesives 2022-2032: Technologies, markets and forecasts’, covering this emerging form of joining technology. Electrically ...

Read more...
NXP exhibits the art of semiconductors
Electronics Technology
An exhibit of semiconductor history reinterpreted as art recently finished its run at ArtEZ University of the Arts in the Dutch city of Arnhem, close to Nijmegen and it was based on NXP Semiconductor’s ...

Read more...
IBM shrinks chip geometries to 2 nm
Electronics Technology
The current state-of-the-art in terms of semiconductor chip geometries has been superseded by a new breakthrough coming out of IBM’s world renowned research division. Currently the ‘process node’ most ...

Read more...
Challenges for electronic circuits in space applications
Altron Arrow Electronics Technology
Outside the protective cover of the Earth’s atmosphere, the natural space radiation environment can damage electronic devices and the effects range from a degradation in parametric performance to a complete functional failure.

Read more...
The surprising ingredients used to bake a solar-panel cake
Electronics Technology
Jon Major, from the BBC’s Future Planet team, has written an article that explores “The unexpected ingredients that improve solar cells”. Some of these ingredients include the likes of capsaicin, the ...

Read more...
Analog Devices leverages Microsoft’s 3D ToF tech
Electronics Technology
Analog Devices is working with Microsoft to leverage Microsoft’s 3D time-of-flight (ToF) sensor technology, allowing customers to easily create high-performance 3D applications that bring higher degrees ...

Read more...
Stable perovskite LEDs one step closer
Electronics Technology
Researchers at Sweden’s Linköping University, working with colleagues in Great Britain, China and the Czech Republic, have developed a perovskite light-emitting diode (LED) with both high efficiency and ...

Read more...