Analogue, Mixed Signal, LSI


How a 16-bit output module can be controlled with full isolation from the MCU

25 November 2020 Analogue, Mixed Signal, LSI

Whether in buildings or on production floors, programmable controllers are needed everywhere today to regulate various processes, machines, and systems. This involves programmable logic controllers (PLCs) or distributed control system (DCS) modules to which the devices are connected. To control these devices, the PLCs and DCS modules usually have output modules with current outputs, voltage outputs, or a combination of both.

Industrial control modules cover the standard analog output voltage and current ranges of ±5 V, ±10 V, 0 V to 5 V, 0 V to 10 V, 4 mA to 20 mA, and 0 mA to 20 mA. Especially in the industrial sector, galvanic isolation of the microcontroller and the output peripherals is often required.

Classic solutions provide for a discrete design to convert the digital signals from the microcontroller to analog signals, or provide the different analog outputs, and to realise the galvanic isolation. However, compared with integrated solutions, a discrete design exhibits many disadvantages. For example, the large number of components results in high system complexity, a large board size, and high costs. Additional characteristics such as short-circuit capability or even fault diagnostics bring these drawbacks to the fore.

A better solution is to integrate as many functions as possible on a single chip, as is done, for example, with the AD5422, a high-precision, 16-bit DAC from Analog Devices. In addition to the digital-to-analog conversion, it also offers a fully integrated programmable current source and a programmable voltage output, and thus meets the requirements of industrial process control applications.

Figure 1. Simplified example circuit for isolated control of an analog output stage using the AD5422 and the ADuM1401.

Figure 1 shows an example circuit for fully isolated control of an analog output stage of an output module. It is especially suitable for PLCs and DCS modules in process control applications requiring standard current outputs of 4 mA to 20 mA and unipolar or bipolar output voltage ranges. The AD5422 is used here in combination with the ADuM1401 quad-channel digital isolation module.

The outputs of the AD5422 16-bit DAC are configurable via a serial peripheral interface (SPI). The module also has integrated diagnostic functions, which can be useful in industrial environments. The required insulation resistance between the microcontroller and the DAC is achieved with the ADuM1401, whose four channels are used for the SPI connection to the AD5422: three channels (LATCH, SCLK, and SDIN) transmit the data and the fourth channel (SDO) receives the data.

Especially in industrial applications, robust outputs that are resistant to high interference voltages must be provided. The requirements for robustness are set forth in standards such as IEC 61000, which specifies, for example, the requirements with respect to electromagnetic compatibility (EMC). To comply with these standards, it is necessary to have additional external protective circuits at the outputs. One possibility for protective circuitry is shown in Figure 2.

Figure 2. IEC 61000 compliant protective circuits for the outputs of the AD5422.

The current output (IOUT) can be selectively programmed in either the 4 mA to 20 mA or 0 mA to 20 mA range. The voltage output is provided via the separate VOUT pin, which can be configured for voltage ranges of 0 V to 5 V, 0 V to 10 V, ±5 V, or ±10 V. The over-range for all voltage ranges is 10%. Both analog outputs have short-circuit and open-circuit protection and can drive capacitive loads of up to 1 µF and inductive loads of up to 50 mH.

The AD5422 requires an analog power supply (AVDD) in the range of 10,8 V to 40 V. For the digital supply voltage (DVCC), 2,7 V to 5,5 V are required. Alternatively, DVCC can serve as a supply pin for other components in the system or as a termination for pull-up resistors. For this, the DVCC _SELECT pin should be floating and the internal 4,5 V LDO regulator voltage should be applied to the DVCC pin. The maximum available supply current is 5 mA. In the circuit shown, the DVCC is used to supply the galvanically isolated side of the ADuM1401.

High-precision conversion results are obtained from the 16-bit DAC using the ADR4550 external reference voltage. This is a high-precision, low-power, low-noise voltage reference with a maximum initial accuracy of 0,02%, outstanding temperature stability, and low output noise.

The circuit shown here is especially suitable for output modules of PLCs or DCS modules that provide both current and voltage outputs and must comply with EMC standards such as IEC 61000.

For more information contact Conrad Coetzee, Altron Arrow, +27 11 923 9600, ccoetzee@arrow.altech.co.za, www.altronarrow.com


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Closed-loop MEMS accelerometer
26 February 2021, Electrocomp , Analogue, Mixed Signal, LSI
TDK announced the release of Tronics AXO315, a miniature, 1-axis closed-loop MEMS accelerometer with a 24-bit digital SPI interface and SMD package that reaches quartz sensor performance, outperforms ...

Read more...
STM32 wireless MCU module
26 February 2021, Altron Arrow , Telecoms, Datacoms, Wireless, IoT
STMicroelectronics is offering a solution to accelerate the market introduction of new Bluetooth LE and 802.15.4 based IoT devices with a miniature, ready-to-use STM32 wireless microcontroller (MCU) module.  ...

Read more...
LTE Cat.1 module for single-antenna reception
25 November 2020, Altron Arrow , Telecoms, Datacoms, Wireless, IoT
Telit’s LE910S1-EA, a new LTE Cat. 1 module with single antenna, is designed for IoT applications in the EMEA and APAC regions that need a combination of performance, affordability, voice support, 2G ...

Read more...
ST ups the ante with new high-end MCUs
25 November 2020, Altron Arrow , DSP, Micros & Memory
STMicroelectronics has revealed record-breaking STM32 microcontrollers (MCUs) with embedded Flash that bring high-end features such as rich graphics, AI, and state-of-the-art cyber-protection to cost-sensitive ...

Read more...
LoRa-compatible wireless SoCs
25 November 2020, Altron Arrow , Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has expanded availability of its STM32WL long-range sub-GHz wireless system-on-chip (SoC) family, adding flexible configurations and package options for diverse mass-market applications.  ...

Read more...
Shielded 1,0 GHz A/D driver
25 November 2020, RFiber Solutions , Analogue, Mixed Signal, LSI
The AM3073A from Atlanta Micro is a shielded A/D driver module that provides amplification and anti-aliasing filtering of the 1,0 GHz IF output of the AM9017 tuner module. The AM3073A offers 500 MHz ...

Read more...
Two-in-one proximity sensor and IR emitter
25 November 2020, Altron Arrow , Opto-Electronics
The VL6180 is the latest product based on STMicroelectronics’ patented FlightSense technology. This is a ground-breaking technology allowing absolute distance to be measured independent of target reflectance. ...

Read more...
Motion sensors for industrial applications
26 February 2021, Electrocomp , Analogue, Mixed Signal, LSI
TDK has launched a new compact and low-power InvenSense SmartIndustrial sensor platform family. With its support for an extended temperature range of -40°C to 105°C, the new family of 3-axis accelerometers ...

Read more...
ST ups the ante with new high-end MCUs
26 February 2021, Altron Arrow , DSP, Micros & Memory
STMicroelectronics has revealed record-breaking STM32 microcontrollers (MCUs) with embedded Flash that bring high-end features such as rich graphics, AI, and state-of-the-art cyber-protection to cost-sensitive ...

Read more...
RTLS anchor for integrators and OEMs
26 February 2021, Altron Arrow , Telecoms, Datacoms, Wireless, IoT
Inpixon unveiled its next-generation chirp RTLS anchor board, delivering significantly reduced size, newly integrated antennas, and more robust operating temperature tolerances than the previous generation. ...

Read more...