Power Electronics / Power Management


Isolated gate driver safely controls SiC MOSFETs

28 April 2021 Power Electronics / Power Management

Joining STMicroelectronics’ STGAP family of isolated gate drivers, the STGAP2SiCS is optimised for safe control of silicon carbide (SiC) MOSFETs and operates from a high-voltage rail up to 1200  V.

Capable of producing a gate-driving voltage up to 26 V, the STGAP2SiCS has a raised under-voltage lockout (UVLO) threshold of 15,5 V to meet the turn-on requirements of SiC MOSFETs. If the driving voltage is too low, which can be caused by low supply voltage, the UVLO ensures the MOSFET is turned off to prevent excessive dissipation. The driver features dual input pins that let designers determine the gate-drive signal polarity.

With 6 kV of galvanic isolation between the input section and the gate-driving output, the STGAP2SiCS helps ensure safety in consumer and industrial applications. Its 4 A output-sink/source capability is suited to mid- and high-power converters, power supplies and inverters in equipment such as high-end home appliances, industrial drives, fans, induction heaters, welders and UPSs.

Two different output configurations are available. One has separate output pins that allow independent optimisation of turn-on and turn-off times using a dedicated gate resistor. The second is featured for high-frequency hard switching, with a single output pin and active Miller clamp that limits oscillation of the SiC MOSFET gate-source voltage to prevent unwanted turn-on and enhance reliability. The input circuitry is compatible with CMOS/TTL logic down to 3,3 V, which allows easy interfacing with a wide variety of control ICs.

The STGAP2SiCS features a standby mode that helps cut system power consumption, as well as built-in protection including hardware interlocks to prevent cross-conduction and thermal shutdown of both the low-voltage section and the high-voltage driving channel. Matched propagation delays between the low-voltage and high-voltage sections prevent cycle distortion and minimise energy losses. The total delay is less than 75 ns, permitting accurate pulse-width modulation (PWM) control up to high switching frequencies.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

ABB’s Mission to Zero drives South Africa’s energy transition
ABB Electrification Products Power Electronics / Power Management
ABB Electrification is charting a bold path towards a net-zero future with its Mission to Zero programme, a blueprint that combines energy efficiency, electrification, and digital innovation to accelerate the transition to clean energy.

Read more...
Energy harvesting using a battery-less IoT system
NuVision Electronics Editor's Choice Power Electronics / Power Management
Energy Harvesting plays an essential role in the foundation of ambient IoT, a new generation of ultra-low power connected devices that operate by drawing energy from their environment instead of relying on traditional batteries.

Read more...
Driving power, defining performance
Future Electronics Power Electronics / Power Management
Vishay’s portfolio of inductors, current sense resistors, and MOSFETs provides a comprehensive solution for intelligent power management.

Read more...
Battery simulator module simplifies BMS testing
Test Dynamics Power Electronics / Power Management
The PXI/PXIe solution from Pickering Interfaces offers a scalable, modular design for faster development cycles, lower total cost of ownership, and improved safety.

Read more...
DC PSU: The cornerstone for efficient solar-storage systems
Vepac Electronics Power Electronics / Power Management
PV energy storage systems are evolving and DC power supplies, with their technical characteristics that are naturally compatible with new energy, have become a key carrier for improving system energy efficiency.

Read more...
Why local manufacturing, maintenance and support are key to the success of South Africa’s energy future
Power Electronics / Power Management
Although new renewable generation capacity is being developed, the current transmission infrastructure may not fully support the connection of these sources to the national grid or adequately deliver power to areas of high demand.

Read more...
Converter power modules for 48 V networks
Altron Arrow Power Electronics / Power Management
The economic and quality-of-life benefits of electrification is driving the adoption of HV to 48 V DC-DC conversion across many markets with 48 V power modules becoming more common.

Read more...
The importance of power integrity
Spectrum Concepts Power Electronics / Power Management
[Sponsored] Behind every high-speed system lies the need for power integrity. Without it, even the cleanest signal paths become compromised.

Read more...
Precise multi-vital sign monitoring
Future Electronics Power Electronics / Power Management
The AS7058 by ams OSRAM is an integrated multi-vital sign monitoring device, which provides a complete photoplethysmogram, electrocardiogram, body impedance sensor, and electrodermal activity sensor.

Read more...
Automotive battery diagnostics tester
Comtest Power Electronics / Power Management
Midtronics’ MVT handheld battery tester is a revolutionary tool, powered by MDX-AI, which is set to redefine the standards of battery diagnostics and testing in the automotive industry.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved