Telecoms, Datacoms, Wireless, IoT


The basics of RF LNA testing

28 July 2021 Telecoms, Datacoms, Wireless, IoT

To ensure an LNA design or device performs as designed, there are several ways of evaluating these circuits. Mainly, these measurements are to produce S-parameters, gain, noise figure and linearity figures for a given device.

Low-noise amplifiers (LNAs) are a critical component for telecommunication and sensing systems, as the weak received signals often need to be at a higher signal level for optimal demodulation, digitisation, driving another circuit, or for measurements to be made.


Pasternack’s PE15A1000 is a 1-2 GHz LNA with 35 dB gain and SMA connectors.

LNAs are also used throughout signal chains to add gain to low-power signals when higher-power signals are needed at the input of other elements within the signal chain. This includes amplifying received signals from an antenna or sensor, or increasing the signal power level from local oscillators (LOs) or other frequency generation/drive circuits where it is necessary to ensure that minimal added noise is contributed.

The main purpose of an LNA is to add gain without adding noise, phase noise or distortion. Generally, LNAs are placed as close as possible to the input signal to minimise exposure of the circuit to noise prior to amplification, as any signal content within the bandwidth of an LNA is amplified. To ensure an LNA design or device performs as designed, there are several ways of evaluating these circuits. Mainly, these measurements are to produce S-parameters, gain, noise figure and linearity figures for a given device.

LNA S-parameter measurements and gain

S-parameter measurements can be made with an LNA that is properly supplied and biased using a vector network analyser (VNA), as LNAs are typically 2-port devices. Hence, only S11, S12, S22 and S21 parameters need to be measured. It is important to note that the S-parameters measured here are generally small-signal parameters, not large-signal parameters, which may be beneficial to measure when characterising LNAs with high gain and relatively high power levels as the load may impact the LNA’s performance substantially.

For low-power LNAs, a VNA measuring the S-parameters may be adequate to provide the gain (S21) if port 1 is the input and port 2 is the output. For higher-power LNAs, a signal generator driving the input port and either a power meter or spectrum analyser measuring the amplified input signal at the output can be used to determine the gain.

LNA linearity measurements

The linearity of an LNA is important to measure, as often the power delivered to receiver circuitry needs to be precisely controlled. The 1 dB compression point (P1dB) can be determined by varying the input power at a given frequency. It can be observed from plotting these measurements that at some point the power in compared to the power out relationship is no longer linear. The P1dB is when the gain (output) deviates by 1 dB from what it would otherwise be if the relationship remained linear.

The other linearity measurement commonly performed on LNAs is the third-order intercept used as a gauge of the intermodulation products produced by an LNA. This is measured by inputting two distinct frequencies at the same amplitude and measuring the input power compared to the third-order intermodulation product produced by the mixing of those two tones (2F1-F2 and 2F2-F1). This measurement is typically performed with a designated frequency spacing between the two tones to provide some point of comparison between LNAs.

LNA noise measurements

Most importantly, an LNA is often chosen for the device’s added noise performance, or noise figure (NF). This is a measure of how much noise an LNA adds to the signal passing through it. This measurement is typically done with a noise figure meter or noise figure analyser, and an RF signal generator. The test system is often calibrated using a calibrated noise source, to remove the uncertainty from the measurement setup and to isolate the noise response of the device under test (DUT). NF is most commonly given in terms of decibels.

Other LNA features of note are:

• Gain flatness.

• Saturation power.

• Port impedance.

• Operating temperature.

• Stability.

• Supply and biasing.

• Electronic and environmental survivability/performance.

• Input and output voltage standing wave ratio (VSWR).


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Wi-Fi 6 and Bluetooth LE co-processor
Altron Arrow Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has released its ST67W611M1, a low-power Wi-Fi 6 and Bluetooth LE combo co-processor module.

Read more...
Improving accuracy of outdoor devices
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
In a real-world environment, accessing a direct satellite signal is not always possible, and it cannot be relied upon as the only solution to provide a device with accurate location at all times.

Read more...
New 3dB hybrid couplers
Electrocomp Telecoms, Datacoms, Wireless, IoT
Designed to facilitate the continued evolution of high-frequency wireless systems in various market segments, the new DB0402 3dB 90° hybrid couplers provide repeatable high-frequency performance compatible with automated assembly.

Read more...
Next-level Software Defined Radio
IOT Electronics Telecoms, Datacoms, Wireless, IoT
Great Scott Gadgets has announced the HackRF Pro, a powerful evolution of its popular Software Defined Radio (SDR) platform designed for engineers and enthusiasts.

Read more...
High-performance Zigbee and BLE module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The KCMA32S from Quectel boasts an ARM Cortex-M33 processor with a frequency of up to 80 MHz, and supports Zigbee 3.0, BLE 5.3 and BLE mesh.

Read more...
Championing local PCB manufacturing
Master Circuits Telecoms, Datacoms, Wireless, IoT
Master Circuits, founded in 1994 by Peter Frankish in Durban, was born from the vision to meet the growing local demand for quick-turnaround printed circuit boards in South Africa.

Read more...
How IoT-driven smart data helps businesses stay ahead
Trinity IoT Telecoms, Datacoms, Wireless, IoT
With around 19 billion IoT devices globally, embedded in everything from machinery to vehicles to consumer products, reliable data is plentiful.

Read more...
IoT-optimised LTE Cat 1 bis module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s EG915K-EU is an LTE Cat 1 bis wireless communication module specially designed for M2M and IoT applications.

Read more...
Chip provides concurrent dual connectivity
EBV Electrolink Telecoms, Datacoms, Wireless, IoT
The IW693 from NXP is a 2x2 dual-band, highly integrated device that provides concurrent dual Wi-Fi 6E + Wi-Fi 6 and Bluetooth connectivity, supporting four different modes.

Read more...
Nordic Semiconductor acquires Memfault
RF Design News
With this acquisition, Nordic has launched its first complete chip-to-cloud platform for lifecycle management of connected products.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved