Telecoms, Datacoms, Wireless, IoT


The basics of RF LNA testing

28 July 2021 Telecoms, Datacoms, Wireless, IoT

To ensure an LNA design or device performs as designed, there are several ways of evaluating these circuits. Mainly, these measurements are to produce S-parameters, gain, noise figure and linearity figures for a given device.

Low-noise amplifiers (LNAs) are a critical component for telecommunication and sensing systems, as the weak received signals often need to be at a higher signal level for optimal demodulation, digitisation, driving another circuit, or for measurements to be made.


Pasternack’s PE15A1000 is a 1-2 GHz LNA with 35 dB gain and SMA connectors.

LNAs are also used throughout signal chains to add gain to low-power signals when higher-power signals are needed at the input of other elements within the signal chain. This includes amplifying received signals from an antenna or sensor, or increasing the signal power level from local oscillators (LOs) or other frequency generation/drive circuits where it is necessary to ensure that minimal added noise is contributed.

The main purpose of an LNA is to add gain without adding noise, phase noise or distortion. Generally, LNAs are placed as close as possible to the input signal to minimise exposure of the circuit to noise prior to amplification, as any signal content within the bandwidth of an LNA is amplified. To ensure an LNA design or device performs as designed, there are several ways of evaluating these circuits. Mainly, these measurements are to produce S-parameters, gain, noise figure and linearity figures for a given device.

LNA S-parameter measurements and gain

S-parameter measurements can be made with an LNA that is properly supplied and biased using a vector network analyser (VNA), as LNAs are typically 2-port devices. Hence, only S11, S12, S22 and S21 parameters need to be measured. It is important to note that the S-parameters measured here are generally small-signal parameters, not large-signal parameters, which may be beneficial to measure when characterising LNAs with high gain and relatively high power levels as the load may impact the LNA’s performance substantially.

For low-power LNAs, a VNA measuring the S-parameters may be adequate to provide the gain (S21) if port 1 is the input and port 2 is the output. For higher-power LNAs, a signal generator driving the input port and either a power meter or spectrum analyser measuring the amplified input signal at the output can be used to determine the gain.

LNA linearity measurements

The linearity of an LNA is important to measure, as often the power delivered to receiver circuitry needs to be precisely controlled. The 1 dB compression point (P1dB) can be determined by varying the input power at a given frequency. It can be observed from plotting these measurements that at some point the power in compared to the power out relationship is no longer linear. The P1dB is when the gain (output) deviates by 1 dB from what it would otherwise be if the relationship remained linear.

The other linearity measurement commonly performed on LNAs is the third-order intercept used as a gauge of the intermodulation products produced by an LNA. This is measured by inputting two distinct frequencies at the same amplitude and measuring the input power compared to the third-order intermodulation product produced by the mixing of those two tones (2F1-F2 and 2F2-F1). This measurement is typically performed with a designated frequency spacing between the two tones to provide some point of comparison between LNAs.

LNA noise measurements

Most importantly, an LNA is often chosen for the device’s added noise performance, or noise figure (NF). This is a measure of how much noise an LNA adds to the signal passing through it. This measurement is typically done with a noise figure meter or noise figure analyser, and an RF signal generator. The test system is often calibrated using a calibrated noise source, to remove the uncertainty from the measurement setup and to isolate the noise response of the device under test (DUT). NF is most commonly given in terms of decibels.

Other LNA features of note are:

• Gain flatness.

• Saturation power.

• Port impedance.

• Operating temperature.

• Stability.

• Supply and biasing.

• Electronic and environmental survivability/performance.

• Input and output voltage standing wave ratio (VSWR).


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...
RF power amplifier
RF Design Telecoms, Datacoms, Wireless, IoT
The ZHL-20M2G7025X+ from Mini-Circuits is a 32 W power amplifier that operates from 20 to 2700 MHz and delivers a saturated output power of +45 dBm.

Read more...
Introducing the Quectel EG800Z series
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The EG800Z series is Quectel’s latest ultra-compact LTE Cat 1 bis module, designed to deliver reliable connectivity, low power consumption, and robust performance across a wide range of IoT applications.

Read more...
NeoMesh on LoRa
CST Electronics Telecoms, Datacoms, Wireless, IoT
Thomas Steen Halkier, CEO of NeoCortec, recently gave a keynote speech where he spoke about “NeoMesh on LoRa: Bringing true mesh networking to the LoRa PHY”.

Read more...
Modules upgraded with Direct-to-Cell tech
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced that several of its LTE modules are now available with Direct-to-Cell (D2C) functionality, enabling devices to seamlessly connect to satellite networks.

Read more...
USB/Ethernet smart RF power sensor
RF Design Telecoms, Datacoms, Wireless, IoT
The PWR-18PWHS-RC from Mini-Circuits is an RF power sensor that operates from 50 MHz to 18 GHz and is designed to capture pulsed and trace modulated signals with very high data resolution.

Read more...
Tiny Bluetooth LE + 802.15 + NFC module
RF Design Telecoms, Datacoms, Wireless, IoT
Unleashing enhanced processing power, expanded memory, and innovative peripherals, the BL54L15µ from Ezurio is the ultimate choice for small and low power connectivity.

Read more...
Trasna and RF Design announce distribution agreement
RF Design News
Trasna and RF Design have announced a strategic distribution agreement for cellular IoT solutions which will ensure seamless availability of Trasna’s cellular connectivity solutions.

Read more...
AI modules for edge intelligence
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom has introduced two new entry-level AI computing modules, the SIM8668 and SIM8666, designed to bring intelligent capabilities to lightweight, energy-efficient edge devices.

Read more...
High performance ISM antennas
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced the launch of two new high performance ISM antennas, designed to meet the need for wireless communication in devices that operate in the industrial and commercial applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved