Electronics Technology


Microchip’s new IC to replace Hall effect position sensors

30 May 2022 Electronics Technology

Developers of motor control systems are rapidly replacing Hall effect position sensors and older magnetic resolver solutions with inductive alternatives that eliminate expensive magnets and other transformer-based structures so they can be integrated onto simple, compact PCBs. Extending the line of inductive position sensors into the EV motor control market, Microchip has announced the LX34070 IC that has been purpose-built for EV motor control applications. The IC includes differential outputs, fast sample rates and features that make it functional-safety-ready for ISO 26262 compliance in the Automotive Safety Integrity Level–C (ASIL–C) classification.

“The LX34070 inductive position sensor enables lighter, smaller, more reliable motor control solutions that meet stringent safety requirements, reduce overall system costs, and can operate seamlessly and precisely in the noisy environment of an automobile’s DC motors, high currents and solenoids” said Fanie Duvenhage, vice president of Microchip’s mixed signal and linear analog business unit. “Designers can use the LX34070 to further streamline EV motor control designs by pairing it with other functional-safety-ready Microchip devices including our 8-bit AVR and PIC microcontrollers, our 32-bit microcontrollers, and our dsPIC digital signal controllers.”

The LX34070 inductive position sensor solution offers numerous advantages compared to magnetic resolvers and linear voltage differential transducers (LVDTs), at a fraction of the cost. By using PCB traces rather than transformer-based magnetic windings and coil structures, the LX34070 device has negligible size and mass compared to alternatives. Accuracy is improved since the LX34070 does not depend on magnetic field strength, and the device improves robustness by actively rejecting stray magnetic fields. This allows designers greater flexibility over where they can position the PCB-based LX34070 solution in their EV motor control designs.

PCB-based inductive position sensors use a primary coil to generate an AC magnetic field that couples with two secondary coils. A small metal target object disturbs the magnetic field so that each secondary coil receives a different voltage whose ratio is used to calculate absolute position. Using these techniques, Microchip introduced its first high-volume inductive sensor for automotive and industrial applications over a decade ago and has many programmes in volume production. The LX34070 now brings the same proven PCB materials, approaches and simplified, low-cost packaging to EV motor control and other applications that need its high-speed and low-latency benefits.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Development board supports Arduino and ST Morpho
Altron Arrow DSP, Micros & Memory
The Arduino UNO V3 connectivity support and the ST Morpho headers allow the easy expansion of the functionality of the STM32 Nucleo open development platform with a wide choice of specialised shields.

Read more...
140 W USB-C PD reference design
Altron Arrow Electronics Technology
The design has a wide input range of 90 to 264 V AC, 50-60 Hz, and supports an output voltage range of 5 to 28 V (USB-PD 3.1 specification).

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361S-CSL from Analog Devices is a high performance, highly integrated, RF agile transceiver designed for use in 3G and 4G applications operating up to 6 GHz.

Read more...
Industrial on-line UPS improves lead time
Altron Arrow Power Electronics / Power Management
Emerson’s S4KD is an on-line (double conversion) UPS, providing a zero-transfer time from external to internal power during utility power failure, to deliver a seamless flow of power for critical loads.

Read more...
Designing a smart wireless industrial sensor
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
This article provides an overview of wireless standards and assesses the suitability of Bluetooth LE, SmartMesh (6LoWPAN over IEEE 802.15.4e), and Thread/Zigbee (6LoWPAN over IEEE 802.15.4) for use in industrial harsh RF environments.

Read more...
Altron Arrow joins forces with Identiv
Altron Arrow News
The strategic collaboration with Altron Arrow expands Identiv’s reach in the southern African market.

Read more...
Bluetooth Channel Sounding provides sub-metre accuracy
Altron Arrow News
Bluetooth Channel Sounding is a new protocol stack designed to enable secure and precise distance measurement between two Bluetooth LE connected devices.

Read more...
Digital signal controller evolution
Altron Arrow DSP, Micros & Memory
Built around a 32-bit CPU architecture with a 200 MHz operating speed, the dsPIC33A family’s advanced core includes a Double-Precision Floating-Point Unit and DSP instructions for numerically intensive tasks in many closed-loop control algorithms.

Read more...
100 V half-bridge GaN driver
Altron Arrow Power Electronics / Power Management
The LT8418 from Analog Devices is a 100 V half-bridge GaN driver that integrates top and bottom driver stages, driver logic control, and protections.

Read more...
Finer dead reckoning for GNSS module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Teseo-VIC3D module is an easy to use dead-reckoning GNSS standalone module, embedding TeseoIII single-die standalone positioning receiver IC working simultaneously on multiple constellations.

Read more...