Power Electronics / Power Management


Achieving higher-reliability isolation than traditional EMs can provide

31 August 2022 Power Electronics / Power Management

Relays have been used as switches since before the transistor was invented. The ability to safely control high-voltage systems from lower-voltage signals, as is the case in isolation resistance monitoring, is necessary for the development of many automotive systems. While the technology of electromechanical relays and contactors has improved over the years, it is still challenging for designers to achieve their goals of lifetime reliability and fast switching speeds, along with low noise, shock vibration and power consumption.

Solid-state relays (SSRs) exhibit performance and cost benefits and are rated for different levels of isolation. SSRs also possess advantages over alternative technologies such as electromechanical relays and solid-state photo-relays.

Traditional relay switching solutions

Electromechanical relays (EMRs) are common in high-voltage switching applications. EMRs employ the use of electromagnetic forces to mechanically switch contacts on and off. Given their mechanical nature, EMRs feature an incredibly low on-resistance; their contacts are essentially a metal-to-metal connection.

EMRs do have trade-offs, however, when it comes to switching speeds and reliability. Moving parts inside the relay are a limiting factor, and switching speed is typically in the 5 to 15 ms range. Over time and with use, an EMR can experience failures such as arcing, chattering and welding shut.

Unlike EMRs, photo-relays have no moving parts and provide a high isolation voltage. Photo-relays are an improvement over traditional EMRs; but they also have design considerations such as limitations on the achievable power transfer as well as deterioration of the internal LED. Additionally, photo-relays need an external current-limiting resistor and often use additional field-effect transistors (FETs) to manage the LED’s switched state.

Higher-reliability isolation using SSRs

Solid-state relays from TI are available as switches (with integrated FETs) or drivers for controlling external FETs. TI’s TPSI2140-Q1 isolated switch and TPSI3050-Q1 isolated driver feature higher reliability and longevity compared to EMRs, since they do not experience mechanical deterioration over time. SSRs thus enable a ten times higher lifetime reliability than traditional EMRs. These SSRs can also switch in the microsecond range, orders of magnitude faster than EMRs.

Since the TPSI3050-Q1 and TPSI2140-Q1 integrate power and signal transfer across a single isolation barrier, no secondary bias supply is necessary, making it possible to achieve a small solution size. Figure 1 illustrates the use of the TPSI2140-Q1 isolated switch in a high-voltage system, eliminating external components such as a bias supply and external control circuits.

These solid-state relays also offer advantages over traditional photo-relays and optocouplers. The TPSI2140-Q1 and TPSI3050-Q1 achieve better reliability over photo-relays because there is no LED degradation, and no external control circuits are necessary because the logic-level input can drive the system directly.

These solid-state relays provide the highest dielectric strength at the fastest speed, highest operating temperature and lowest system cost. They also enable more reliable switching in a smaller package.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

New nickel-metal hydride railway battery system
Avnet Abacus Power Electronics / Power Management
The modular Ni-MH battery system from Panasonic Energy is engineered to provide an auxiliary power supply for railway vehicles, offering a range of features that sets it apart from traditional systems.

Read more...
Development board supports Arduino and ST Morpho
Altron Arrow DSP, Micros & Memory
The Arduino UNO V3 connectivity support and the ST Morpho headers allow the easy expansion of the functionality of the STM32 Nucleo open development platform with a wide choice of specialised shields.

Read more...
Power module for industrial and medical
Vepac Electronics Power Electronics / Power Management
The TUNS1200 is a compact power converter from Cosel that has a 1,2 kW low-profile onboard AC/DC power module, and is designed for demanding worldwide applications.

Read more...
140 W USB-C PD reference design
Altron Arrow Electronics Technology
The design has a wide input range of 90 to 264 V AC, 50-60 Hz, and supports an output voltage range of 5 to 28 V (USB-PD 3.1 specification).

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361S-CSL from Analog Devices is a high performance, highly integrated, RF agile transceiver designed for use in 3G and 4G applications operating up to 6 GHz.

Read more...
Intelligent power delivery
Future Electronics Power Electronics / Power Management
The MEAN WELL DRS-240 and DRS-480 DIN rail power supplies present an all-in-one solution for intelligent power delivery in systems that require the highest reliability and safe operation.

Read more...
Industrial on-line UPS improves lead time
Altron Arrow Power Electronics / Power Management
Emerson’s S4KD is an on-line (double conversion) UPS, providing a zero-transfer time from external to internal power during utility power failure, to deliver a seamless flow of power for critical loads.

Read more...
Designing a smart wireless industrial sensor
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
This article provides an overview of wireless standards and assesses the suitability of Bluetooth LE, SmartMesh (6LoWPAN over IEEE 802.15.4e), and Thread/Zigbee (6LoWPAN over IEEE 802.15.4) for use in industrial harsh RF environments.

Read more...
Altron Arrow joins forces with Identiv
Altron Arrow News
The strategic collaboration with Altron Arrow expands Identiv’s reach in the southern African market.

Read more...
Researchers discover a simple way to make batteries last longer
Power Electronics / Power Management
Researchers at the SLAC-Stanford Battery Center have discovered a way to extend the life of Li-ion batteries by up to 70% with a simple change to the process immediately after production.

Read more...