Programmable Logic


Solving industry 4.0 challenges with software-configurable I/O

28 September 2022 Programmable Logic

Traditionally, field instruments are connected to the Ethernet domain using legacy analog signalling (4 to 20 mA, 0 to 10 V). This presents challenges for fixed-function I/O modules. System designers need to design multiple modules to cover the different sensors and actuators. Crowded cabling could cause incorrect connections of sensors and actuators to these fixed-function I/Os, and debugging and fixing these faults are time-consuming and require manually reconnecting the loads to the I/O channels. A software-configurable I/O module solves these problems by allowing for efficient use of all channels in an I/O system.

A software configurable I/O system provides a seamless transition from legacy analog signalling to the Industrial Ethernet domain. Software configurable I/O devices can provide any function (analog I/O, digital I/O, RTD) on any channel through remote configuration, which helps ease commissioning. This flexibility, combined with diagnostics capability, allows for remote troubleshooting, thus saving time for technicians. Figure 1 shows the evolution of industrial connectivity from legacy analog signalling to smart, digitally connected sensors with software-configurable I/O enabling a seamless transition.

Analog Devices’ AD74413R software-configurable I/O coupled with the ADP1032 two-channel isolated micropower management unit (µPMU) is one example of a robust software-configurable I/O solution. The AD74413R is a quad-channel software-configurable I/O that is equipped with automatic fault detection and diagnostic capabilities. The ADP1032 is tailored to the AD74413R to provide isolated power and data channels, which allow for a compact and isolated software-configurable I/O system.

Channel flexibility

For industrial applications with varying I/O requirements, system designers need a flexible system that can be quickly configured to adapt to the required demand. The four channels of the AD74413R can be configured into various input and output modes such as:

• High impedance.

• Voltage input.

• Voltage output.

• Externally powered current input.

• Loop-powered current input.

• Current output.

• Digital input logic.

• Loop-powered digital input.

• RTD measurement.

A single set of external discrete components is required to support any function on any of the four channels, offering full flexibility. If an actuator or sensor is not wired correctly, the channel can be reconfigured with a single SPI.

Having all functions available in a single package requires fewer components in the hardware design, which leads to lower assembly and test costs, higher reliability and easier debugging, simplified procurement, and higher channel density compared to discrete implementations of universal I/O.

Fault detection and diagnostic capabilities

The AD74413R is equipped with automatic fault detection and different diagnostic functions to help with fault isolation. Users can interrogate an alert register to determine the exact cause of a reported fault. Users can also enable diagnostic signals to further diagnose the identified fault.

These capabilities allow technicians to remotely troubleshoot any faults occurring in the system. In many existing systems, sensors and actuators may be located far away from the control room and in potentially hazardous areas. In addition, crowded cabling may also make it difficult to determine which cables are connected to which sensor or actuator, making it cost prohibitive and time-consuming to physically rewire these systems. The AD74413R modules provide configurability and diagnostics to determine which sensor or actuator is connected to a particular channel.

Isolated power and data solution

The ADP1032 satisfies the requirement for isolated power and data channels by having two isolated and regulated rails and seven data isolation channels all in one package. This provides a board area reduction up to three times compared to a discrete power and data isolation solution. This allows customers to increase the overall channel density in their modules. The four SPI signals of the AD74413R use the high-speed isolated data channels of the ADP1032, which are optimised for low propagation delays of 15 ns, supporting SPI clock rates up to 16,6 MHz. The low-speed isolated data channels are used where timing is not critical.

Power dissipation

Having a flexible multi-channel system poses a trade-off on the system power dissipation because each channel of the AD74413R software-configurable I/O can be configured to various modes while the power supply for the AD74413R sticks to a single output voltage. The designer must pick the highest AD74413R AVDD supply voltage so that the worst-case condition can be supported with consideration to the load characteristics, to ensure the proper operation of each mode.

Conclusion

The digitalisation of factories brings increased production output, factory utilisation, and labour productivity. However, the transition to the digital factory is a challenge because legacy systems lack 10BASE-T1L-supported sensors and actuators. The AD74413R software-configurable I/O, coupled with the ADP1032, bridges the gap for Ethernet-enabled field instruments. The four channels of the AD74413R are flexible and can each be programmed to eight different I/O configurations. Its fault detection and diagnostic capabilities save time during the debugging and commissioning of a system. The diagnostic capability can also be used to monitor systems for maintenance. Finally, the ADP1032 galvanically isolates the data and power sources, ensuring the safe and efficient transfer of power and data.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Capacitors for implantable medical applications
Altron Arrow Passive Components
Vishay has a range of tantalum and multilayer ceramic capacitors (MLCC), manufactured in medical-qualified facilities, for implantable applications.

Read more...
Precision sensor interface SoC
Altron Arrow DSP, Micros & Memory
The MAX40109 is a low-power, precision sensor interface SoC that includes a high-precision, programmable analogue frontend, and digital signal processing.

Read more...
How integrated on/off controllers contribute to energy-efficient system designs
Altron Arrow Editor's Choice Power Electronics / Power Management
The importance of electronic system efficiency has grown more significant, emphasising the need for solutions that promote energy efficienc,y not just during field operation, but also during production.

Read more...
Robbie Venter, former CEO of Altron, passes
Altron Arrow News
It is with sadness that we report on the passing of the former chief executive and board member of South African technology group Altron, Robert (Robbie) Venter.

Read more...
Material promises 100 times higher energy density
Altron Arrow Power Electronics / Power Management
TDK Corporation has successfully developed a material for CeraCharge, a next-generation solid-state battery with an energy density of 1000 Wh/L, approximately 100 times greater than the energy density of TDK’s conventional solid-state battery.

Read more...
Precision voltage reference
Altron Arrow Analogue, Mixed Signal, LSI
The ADR1001 is a fully integrated, ultra-low drift, buried Zener precision voltage reference solution in a single chip.

Read more...
Embedding AI into your next project?
Altron Arrow AI & ML
ST has collated all its AI tools into one resource, the ST Edge AI Suite, and includes free design tools, case studies, and other resources to accelerate AI development into embedded systems.

Read more...
Benefits of a transformer-coupled amplifier
Altron Arrow Editor's Choice Power Electronics / Power Management
The efficiency of a Class A power amplifier is nearly 30%, which is improved to 50% by using a transformer-coupled Class A power amplifier.

Read more...
Five-port SPoE controller
Altron Arrow Power Electronics / Power Management
SPoE simplifies system design and installation with standardised power and Ethernet data over a single-pair cable, and the LTC4296-1 has been designed for interoperability with 802.3cg powered devices.

Read more...
Low power, low-noise amplifier
Altron Arrow Analogue, Mixed Signal, LSI
The ADL8141 is a low power consumption, low-noise amplifier that operates from 14 to 24 GHz, and draws a supply current of 25 mA from a 2 V supply.

Read more...