Editor's Choice


IEEE 802.11be: What’s the fuss?

30 August 2023 Editor's Choice Telecoms, Datacoms, Wireless, IoT

The next amendment to the IEEE 802.11 Wi-Fi standard is known as IEEE 802.11be EHT (Extremely High Throughput), building onto the previous generation 802.11ax. Included are functions like orthogonal frequency-division multiplexing (OFDM) where a single stream of information is split across several closely spaced subchannel frequencies, and the inclusion of the 6 GHz transmission frequency from Wi-Fi 6E, ensure blisteringly fast data throughput with little delay.

Wi-Fi 7 was first approved in March 2019, with the initial specifications being a protocol using three frequencies and communicating at up to 46120 Mb/s. Although not yet ratified – this is expected to be completed only in May 2024 – many manufacturers are releasing products based on the new standard, and some are bypassing the Wi-Fi 6E standard altogether to jump directly to Wi-Fi 7 (which promises everything Wi-Fi 6E has and more). Although these devices are based on a preliminary version, manufacturers will effect any changes later on via a firmware update.

The standard is backwards compatible with current Wi-Fi 5 and Wi-Fi 6 standards, so all existing devices currently deployed on a wireless network will continue to function. However, with more powerful hardware and better antenna arrangements, it will provide faster speeds and a better quality connection, with lower latency. Stability is reported to also have been improved over the predecessors.

And these improvements are vital for the modern data-hungry applications that users are expecting in the future. Examples include simultaneously streaming from multiple sources in high definition, applications using augmented and virtual reality (AR and VR), networks that are sure to be connected to hundreds of IoT devices all collecting and transmitting data, and of course, high-speed low-latency cloud gaming.

To achieve this, Wi-Fi 7 offers various features like faster and a larger number of MIMO streams, wider radio channels, and other features to prevent channels from causing interference during these multiple streams.

As shown in figure 1, Wi-Fi 7 doubles the available bandwidth, compared to Wi-Fi 6E. This is accomplished with three super-wide 320 MHz channels (compared to Wi-Fi 6’s 160 MHz channels) on the dedicated 6 GHz band while still using the existing channels on the legacy 5 and 2,4 GHz bands.

Quadrature Amplitude Modulation (QAM) is the scheme used to translate digital packets into an analogue signal that can wirelessly transfer the data. By varying the phase and amplitude of radio waves, spectral efficiency is improved by incorporating more data into each transmission.

When it comes to arranging the data into packets, Wi-Fi 7 has certainly surged ahead. Whereas Wi-Fi 5 and Wi-Fi 6 used 256-QAM and 1K-QAM respectively, Wi-Fi 7 makes the jump to a 4K-QAM (1024-QAM) scheme, an increase to the physical layer data rate of 20% over Wi-Fi 6.

With Wi-Fi 5 and Wi-Fi 6 there are a maximum of eight MIMO data streams per frequency. Wi-Fi 7 doubles this to 16 MIMO streams resulting in a theoretical transmission rate of 46 Gb/s (if all 16 streams are used over a 320 MHz channel). Therefore, combined with 320 MHz ultra-wide bandwidth, multi-link operation and 4K-QAM, Wi-Fi 7 provides speeds up to 4,8 times faster than Wi-Fi 6 and 13 times faster than Wi-Fi 5.


Figure 3. TP-Link Deco BE95 Wi-Fi 7 mesh router.

So far, however, the top routers available that support this new standard only support a maximum of four MIMO streams. Secondly, a connected device can only transmit over one frequency at a time, so the real-world transmission throughput will be around twice as fast as Wi-Fi 6. This is still a major boost, as combined with the increase in throughput, there will be less congestion, resulting in a more consistent link.

One manufacturer that has already announced products using this new Wi-Fi standard is TP-Link with its Deco BExx range of mesh routers. The Deco BE95 is a quad-band whole home mesh Wi-Fi 7 system that can handle 16 streams for a total throughput of up to 33 Gb/s (each of the two 6 GHz links can accommodate 11 520 Mb/s and this is combined with the 5 GHz (8640 Mb/s) and 2,4 GHz links. This multi-link operation, together with the 320 MHz-wide channels, not only increases throughput but also reduces latency and improves reliability of the communication link.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

LTE Cat 1 modules offer next-gen connectivity
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The innovative LTE modules A7683E, A7663E, and A7673X have revolutionised IoT connectivity and saved costs for developers and circuit manufacturers.

Read more...
Boost your LTE/5G signal
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Reliable connectivity is essential in today’s world - whether you’re working from home, running a small business, or living in a rural area where mobile signals are weak.

Read more...
Accelerating AI adoption in MCU manufacturing
Editor's Choice AI & ML
To gain the value of ML functionality, designers of MCU-based devices have to adopt a new development method and accept a new type of probabilistic rather than deterministic output.

Read more...
Altron Arrow: Empowering innovation with STMicroelectronics AI processors
Altron Arrow Editor's Choice AI & ML
ST’s AI processors are not only smarter and faster, but also incredibly efficient, enabling a new wave of intelligent solutions across multiple industries.

Read more...
The superpower driving the future of low carbon electricity
Editor's Choice
Modularity is a superpower. The advantage lies in smaller units that can be built, tested, refined, adapted, improved repetitively, allowing many experimentation and learning iterations.

Read more...
Eskom’s evolution sparks hope
Editor's Choice
Eskom’s evolution has sparked hope that a large corporation can change and learn to think outside the grid.

Read more...
Potential risks of plasma treatment on PCBs
MyKay Tronics Editor's Choice
Plasma treatment involves exposing PCBs to an ionised gas, known as plasma, but despite many advantages, several risks must be managed to ensure safe and effective plasma application in EMS.

Read more...
X-band radar
RF Design Editor's Choice Telecoms, Datacoms, Wireless, IoT
X-band radar systems, particularly those leveraging beamforming ICs (BFICs), advanced gallium nitride (GaN) and gallium arsenide (GaAs) components, are leading the way in providing the high-performance radar capabilities required for modern defence and surveillance.

Read more...
Remote provisioning firmware added to SIMCom modules
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently announced that its range of Cat 1 bis IoT modules are now being prepared with the firmware necessary to support SGP.32 functionality.

Read more...
LED driver for industrial power supply indication
Altron Arrow Editor's Choice Circuit & System Protection
A simple and small solution for driving an LED to provide visual feedback in the presence/absence of a system’s power using a chip not originally designed for this purpose.

Read more...