DSP, Micros & Memory


An IP protection scheme for Infineon microcontrollers

24 July 2013 DSP, Micros & Memory

In today’s chip business, one increasingly common market model involves an original equipment manufacturer (OEM) buying microcontrollers from a chip supplier and then engaging an independent design house (IDH) to develop custom embedded software (which constitutes intellectual property or IP) for the chips used in the end product.

The OEM pays royalties to the IDH depending on the volume of end products that are using the IP. The OEM further engages an external programmer house to program the chips with the IP (Figure 1).

Figure 1. Market model and possible risks.
Figure 1. Market model and possible risks.

Such a model carries some risks to the OEM and the IDH. For example, the IP could be leaked through grey channels to a pirate production plant and used to produce software clones. Also, since the volume of end product is not visible to the IDH, a less fair-minded OEM may attempt to pay less royalties by under-declaring the IP usage.

Infineon’s XMC1000 microcontroller family addresses such risks by offering an IP protection option. The IDH will be empowered with the tools to encrypt the IP based on the 128-bit key Advanced Encryption Standard (AES) and the resulting encrypted IP can only be downloaded into authorised devices, where it will get decrypted and programmed into the devices’ Flash memory.

This ensures that the IP is always transported in its encrypted form until it is downloaded into the device. The IDH will now also have the means to keep track of the number of end products that would be using the IP.

Building blocks

The IP protection scheme requires three basic building blocks, as illustrated in Figure 2:

Figure 2. Basic building blocks of IP protection concept.
Figure 2. Basic building blocks of IP protection concept.

* XMC1000 device with Secure Loader.

* Software encryption tool.

* Programming tool (supporting Secure Loader).

The Secure Loader is a startup mode and feature, introduced in the XMC1000, to process 128-bit AES encrypted data. Based on a defined protocol and command set, the Secure Loader is able to receive the encrypted data, decrypt the data within the device and program the data into the Flash memory.

Devices with the Secure Loader feature are grouped based on a pre-defined number of devices, termed a batch, and each batch of devices is assigned a unique identifier called SBSL ID.

The PC-based software encryption tool is used to encrypt the IP based on 128-bit key AES (IP key) and embed information to identify the SBSL ID of the target device in the final output file. The above can be performed only after the encryption tool has received the IP, IP key and SBSL ID of the target device.

The IP key is generated from an Infineon smart card interfaced to the encryption tool through a PC/SC card reader. Both the encryption tool and the smart card will be provided by Infineon to the IDH.

A programming tool supporting Secure Loader is required to interface to the target device. When connected to a device, the programming tool will send a command to read the SBSL ID from the device and based on this SBSL ID, retrieve the matching output file containing the encrypted IP. The programming tool is also used to send the command to initiate the download of encrypted data and the subsequent programming of the IP into the device.

IP protection usage flow

IP protection is initiated when the OEM provides the SBSL ID of the target devices to the IDH. Once the SBSL ID of the target devices is known, the IDH encrypts the IP using the encryption tool and delivers the final output file containing the encrypted data to the programmer house. If more than one SBSL ID is used, there will be a corresponding number of output files generated, one for each SBSL ID.

Figure 3. IP protection usage flow.
Figure 3. IP protection usage flow.

The programmer house then uses the programming tool to download the encrypted data through the Secure Loader into the target device, where it will be decrypted and programmed into the Flash memory. The programmer house must use devices that have a SBSL ID matching to the list provided by the OEM, otherwise the programming tool will flag an error and data download to the unknown device fails. The programmed devices are finally shipped to the OEM for end product assembly (Figure 3).

The discussion in this article references a market model involving an OEM, an IDH and a programmer house, but the IP protection scheme can easily be applied to other models as well.

For more information contact Davis Moodley, Infineon Technologies, +27 (0)11 706 6099, www.infineon.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

New PIC MCU family
25 March 2020, Avnet South Africa , DSP, Micros & Memory
In microcontroller (MCU)-based system design, software is often the bottleneck for both time to market and system performance. By offloading many software tasks to hardware, Microchip Technology’s new ...

Read more...
MCUs for new-generation smart objects
26 February 2020, Altron Arrow , DSP, Micros & Memory
STMicroelectronics’ latest STM32H7A3, STM32H7B3, and STM32H7B0 Value Line microcontrollers (MCUs) combine 280 MHz Arm Cortex-M7 core performance, high memory density, and power savings for future generations ...

Read more...
DRAM for memory expansion
26 February 2020, Future Electronics , DSP, Micros & Memory
Cypress Semiconductor’s HyperRAM 2.0 is a high-speed, low-pin-count, self-refresh Dynamic RAM (DRAM) for high-performance embedded systems requiring expansion memory. HyperRAM 2.0 offers HyperBus and ...

Read more...
Bluetooth MCUs with NFC peripheral
26 February 2020, EBV Electrolink , DSP, Micros & Memory
NXP Semiconductors announced the availability of its QN9090 and QN9030 Bluetooth 5 System on Chip (SoC) with hardware compatible options for 802.15.4, multiprotocol RF, and optional NFC technology. The ...

Read more...
EERAM memory solutions retain data at power loss
29 January 2020, Avnet South Africa , DSP, Micros & Memory
Microchip Technology announced a new family of Serial Peripheral Interface (SPI) EERAM memory products that offers system designers up to 25% cost savings over the current serial non-volatile ram (NVRAM) ...

Read more...
32-bit Arm microcontrollers
29 January 2020, Hi-Q Electronics , DSP, Micros & Memory
Renesas Electronics unveiled the Renesas Advanced (RA) family of 32-bit Arm Cortex-M microcontrollers (MCUs). They deliver a combination of optimised performance, security, connectivity, peripheral ...

Read more...
Applications processor for machine learning at the edge
29 January 2020, EBV Electrolink , DSP, Micros & Memory
NXP Semiconductors has expanded its advanced EdgeVerse portfolio with the i.MX 8M Plus application processor – the first i.MX family to integrate a dedicated Neural Processing Unit (NPU) for advanced ...

Read more...
NXP further expands LPC5500 MCU family
25 November 2019, EBV Electrolink , DSP, Micros & Memory
NXP Semiconductors announced the availability of its LPC552x/S2x microcontroller (MCU) family, further extending its efficient LPC5500 MCU series with the second of seven families planned for the series. ...

Read more...
Neuromorphic memory solution for AI
23 October 2019, Altron Arrow , DSP, Micros & Memory
As artificial intelligence (AI) processing moves from the cloud to the edge of the network, battery powered and deeply embedded devices are challenged to perform AI functions – like computer vision and ...

Read more...
Neuromorphic memory solution for AI
25 November 2019, Altron Arrow , DSP, Micros & Memory
As artificial intelligence (AI) processing moves from the cloud to the edge of the network, battery powered and deeply embedded devices are challenged to perform AI functions – like computer vision and ...

Read more...