DSP, Micros & Memory


Infineon boosts XMC potential by rebooting DAVE

22 July 2015 DSP, Micros & Memory Design Automation

With the brand new version of its Digital Application Virtual Engineer (DAVE) software, Infineon Technologies has focused on improving data models, methodology and user-friendliness in order to allow much quicker software development for its XMC microcontrollers (MCU).

Version 4 of the embedded development environment is available as a free download at www.infineon.com/dave. The Eclipse-based development platform guides and supports users during software development, from evaluation to the end product. For this, Infineon is providing, among other things, an extensive peripheral- and application-oriented, component-based code repository. In addition, DAVE generates the necessary code for the peripherals of Infineon’s XMC microcontrollers.

This complementary approach allows the user to employ available commercial third-party tools for ARM to translate the C source code configured and generated in DAVE, link it, and load it to the MCU. The main components of this modular, abstracted approach are:

• DAVE: Eclipse-based integrated development environment (IDE), including GNU C compiler, debugger, resource solver and code generation.

• XMC Lib: Static device driver layer in accordance with CMSIS and MISRA-C:2004, library of application programming interfaces (API) for XMC microcontroller peripherals.

• DAVE APPs: Graphically configurable, abstracting application-oriented software components.

• DAVE SDK: Software development kit for the modification or expansion of existing DAVE APPs or the development of new DAVE APPs.

• Examples: Collection of examples that are also intended for further use. These encompass applications on the basis of XMC Lib and DAVE APPs.

• Third parties: XMC Lib and the code generated with DAVE are suitable for use with a compiler from, for example, GCC, ARM, Tasking or IAR, and can be used with standard development environments such as Altium, ARM/Keil, Atollic, IAR Systems and Rowley.

In addition to improved operability and graphics, Infineon has introduced novel functions such as DAVE APP Tree Dependency and Pin Assignment View. The latter, for instance, provides a clear graphical depiction of the manual pin assignment on the selected package.

Improvements in detail

One of the measures to improve the reuse of the software and components available in DAVE was the introduction of a static device driver layer known as XMC Lib. It is subordinated to the DAVE APPs, but can also be used independently in standard third-party development environments. Both XMC Lib and DAVE APPs with the graphical user interface offer optimised software components that allow the user to program quickly and with hardware abstraction.

The new software layer means that the DAVE APPs do not access the microcontroller registers and peripheral registers directly, but instead use the applicable XMC Lib API. This not only increases reusability, but also improves the clarity and readability of the source code generated. This is enhanced by allowing users to freely define user labels for the DAVE APP instance in question. User labels serve as handlers (a pointer to the object) that let DAVE APP methods (APIs) be applied to the desired DAVE APP instance.

DAVE contains a resource solver that allows users to easily program even complex applications on or near the hardware level by means of graphical configurations and combinations of DAVE APPs and XMC Lib. Here, the developer first defines the necessary resources logically (virtually); the resource solver then assigns the logical resources to the physical hardware resources of the respective microcontroller. The resource solver follows the ‘constraint logic programming’ method while doing so. Based on this, DAVE generates easily readable and comprehensively documented source code that includes header files, initialisation code, and the actual functions that Infineon provides for further licence-free use.

With the new DAVE SDK, the user can modify and expand existing DAVE APPs and also develop completely new ones, allowing them to construct their own modular software repository.

DAVE SDK is an independent Eclipse instance that is part of the DAVE installation package. This allows the expansion of the features DAVE APPs have to offer – for example, the addition of communication stacks that the developer can simply incorporate into the application. In principle, DAVE SDK can also be used without XMC microcontroller resource definition. For example, static libraries of any kind can be configured using a graphic user interface, thus simplifying their reusability.

Breaking with the past

Unfortunately, the improved system performance and response that come with DAVE v4’s optimised data models for chip configuration and resource management, have resulted in incompatibility with the previous development environment and DAVE APPs. Infineon has endeavoured to ease the transition, though, with an extensive package for a quick introduction or transition to the new version that includes sample projects for XMC Lib and DAVE APPs, videos, tutorials, application notes, and migration guidelines for the further use of configured and generated source codes with a third-party tool. DAVE and commercial ARM development environments work hand in hand during this process.

For more information contact Davis Moodley, Infineon Technologies, +27 (0)11 706 6099, davis-moodley.external@infineon.com, www.infineon.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

New PIC MCU family
25 March 2020, Avnet South Africa , DSP, Micros & Memory
In microcontroller (MCU)-based system design, software is often the bottleneck for both time to market and system performance. By offloading many software tasks to hardware, Microchip Technology’s new ...

Read more...
MCUs for new-generation smart objects
26 February 2020, Altron Arrow , DSP, Micros & Memory
STMicroelectronics’ latest STM32H7A3, STM32H7B3, and STM32H7B0 Value Line microcontrollers (MCUs) combine 280 MHz Arm Cortex-M7 core performance, high memory density, and power savings for future generations ...

Read more...
DRAM for memory expansion
26 February 2020, Future Electronics , DSP, Micros & Memory
Cypress Semiconductor’s HyperRAM 2.0 is a high-speed, low-pin-count, self-refresh Dynamic RAM (DRAM) for high-performance embedded systems requiring expansion memory. HyperRAM 2.0 offers HyperBus and ...

Read more...
Bluetooth MCUs with NFC peripheral
26 February 2020, EBV Electrolink , DSP, Micros & Memory
NXP Semiconductors announced the availability of its QN9090 and QN9030 Bluetooth 5 System on Chip (SoC) with hardware compatible options for 802.15.4, multiprotocol RF, and optional NFC technology. The ...

Read more...
EERAM memory solutions retain data at power loss
29 January 2020, Avnet South Africa , DSP, Micros & Memory
Microchip Technology announced a new family of Serial Peripheral Interface (SPI) EERAM memory products that offers system designers up to 25% cost savings over the current serial non-volatile ram (NVRAM) ...

Read more...
32-bit Arm microcontrollers
29 January 2020, Hi-Q Electronics , DSP, Micros & Memory
Renesas Electronics unveiled the Renesas Advanced (RA) family of 32-bit Arm Cortex-M microcontrollers (MCUs). They deliver a combination of optimised performance, security, connectivity, peripheral ...

Read more...
Applications processor for machine learning at the edge
29 January 2020, EBV Electrolink , DSP, Micros & Memory
NXP Semiconductors has expanded its advanced EdgeVerse portfolio with the i.MX 8M Plus application processor – the first i.MX family to integrate a dedicated Neural Processing Unit (NPU) for advanced ...

Read more...
NXP further expands LPC5500 MCU family
25 November 2019, EBV Electrolink , DSP, Micros & Memory
NXP Semiconductors announced the availability of its LPC552x/S2x microcontroller (MCU) family, further extending its efficient LPC5500 MCU series with the second of seven families planned for the series. ...

Read more...
Neuromorphic memory solution for AI
23 October 2019, Altron Arrow , DSP, Micros & Memory
As artificial intelligence (AI) processing moves from the cloud to the edge of the network, battery powered and deeply embedded devices are challenged to perform AI functions – like computer vision and ...

Read more...
Neuromorphic memory solution for AI
25 November 2019, Altron Arrow , DSP, Micros & Memory
As artificial intelligence (AI) processing moves from the cloud to the edge of the network, battery powered and deeply embedded devices are challenged to perform AI functions – like computer vision and ...

Read more...