Manufacturing / Production Technology, Hardware & Services

Wearable electronics must endure unique conditions

23 March 2016 Manufacturing / Production Technology, Hardware & Services

‘Wearable’ – a term that was predominantly associated with the clothing industry – is now trending for a whole new reason. Harnessing the electronic functions used in everyday life and incorporating them into devices and accessories that can comfortably be worn on the body, is leading us into the era of #wearables, #wearabletech.

Everyone is talking about wearable technology and with such a wide scope of applications and products the industry is expected to see another large growth in 2015. In fact, for 2014, the wearables market was forecast to be worth over £300 million within the UK market; the second highest prediction in Europe after Germany. The developments are continuing at a rapid rate too, with predictions such as this one by Gartner, that by as soon as 2017, 30% of wearable devices will be completely unobtrusive to the eye.

In all types of use, the technology is designed to make us more efficient; in business, the ongoing development of smart watches, for example, will allow multi-tasking, process tracking and increased involvement during travel and when on the move. In our personal lives, devices such as health bands and fitness trackers will help us to understand our everyday activities better in order to improve our health.

There are also a number of new developments taking place, showing the use of wearable technology in different industries. For example, within the fashion industry companies such as CuteCircuit are designing interactive clothing where the colour or design can be controlled via smartphone apps or twitter feeds. Utilising such technology within clothing has also expanded further into high visibility or safety accessories by companies such as Visijax.

Analysis and research are also key factors within the wearable technologies industry. In sport, there are seemingly endless possibilities to analyse and improve one’s game. Whether it be via the use of Google Glass to aid performance within the sport, navigate a route and send a message during training or by the use of many other sensor based devices that can analyse technique, speed or posture for example; wearable technology provides the opportunity to develop and improve at a much faster rate.

In the medical industry the ability to analyse and treat patients using wearable technology is also offering new avenues of research and is extending into ingestible devices. It is clear that the applications that can develop within this field are seemingly endless.

The technologies that such wearable devices are utilising are already commonplace, however, and are being adapted for use in new applications. For example, the devices usually have to connect to a smartphone or computer in order to relay information or data. As a result, the wearable devices may have wireless or Bluetooth connectivity or as with navigation devices, may incorporate GPS. In addition, a number of applications for wearable technology may use sensors to detect a specific change (which is dependent on the nature of the sensor) and provide an output which again may be transferred to a separate receiver.

Alongside the challenge of actually designing a functioning device, the challenge that wearable technology poses is the nature in which this technology will be used and primarily, the environments that the device may be used in. For instance, a temperature sensor on a static device will have to withstand the temperatures within that environment and any thermal shock or cycling that may take place. A temperature sensor in a wearable device has the added consideration of physical interactions; the device will be moved, worn, may see impact, may be flexed and potentially exposed to a number of additional elements, such as water or chemicals, for example. It is therefore imperative that these devices are protected accordingly to ensure reliable performance when utilised in their end-use environments.

Protection can be provided in the form of encapsulation resins or conformal coatings, for example. The variety of potential applications can also generate another challenge in selecting the most suitable protection compound. As we have already concluded, the wearable device is likely to use some form of connectivity, whether it be direct to another device or system, or via a sensor to record changes in information gathered. This connection to other devices will operate via radio waves and therefore any protection compound used, must allow RF signals to be transmitted without any interference. In connection with this requirement the environmental conditions and general use of the device must be considered in order to produce a full picture of its working life.

To enable a better understanding of likely performance and simplify the selection process, it is possible to draw on experience from other industries and technologies. For instance, if we think of a wearable device that can be worn by a swimmer to monitor heart rate and general health when in the pool, it is immediately understood that this device must still work when immersed in water. Any changes in temperature will be minimal but quite rapid and the frequency and length of time the device could be immersed in water is unknown. It should therefore be assumed that the device is constantly operating when immersed in water. This application can be likened to that of a sonar buoy used in marine applications where sensors are utilised for providing vital information about the sea environment. In this case, the device will have to send an RF signal and operate when constantly immersed in salt water; a similar environment to that of the wearable health tracker worn by the swimmer.

We can also elaborate on the information we have already gained from other industries. For example, salt water is generally more corrosive than the water found in a swimming pool and therefore the application experience gained from the sonar buoys will show the performance of a device protected with a suitable compound, such as Electrolube UR5041, in a similar but more aggressive environment.

This is obviously just one example of many different considerations; the degree of flex and toughness of the device, the operating temperature range and the possibility of any chemicals coming into contact with the device are all possible factors to take into account during the selection process. Thinking about all of these properties and not forgetting the need to allow connectivity via RF signals, there are many properties such as the dielectric constant, salt mist resistance, shore hardness and elongation at break that can be used to find the optimal product for in-use testing.

Although this information may seem somewhat vague, it is clear that each application will have its own criteria in terms of performance, environment and expected use, and in all cases, a reliable and accurate response is required from the wearable device. An example of application requirements is given in the ‘Sudden Impact’ wearable device challenge conducted in 2015 by Element 14 where Electrolube was one of the industry partners. The challenge is to develop a wearable device for athletes that provides vital health information to increase safety on the field and monitor the condition of athletes in real time, thus reducing sports related injuries.

In this case, we know that the device will have to be protected from shock, potentially water or other pollutants, and allow wireless connectivity. As with all wearable devices, there is the possibility that LEDs or displays may be present and therefore the protection offered will need to be clear and maintain its clarity over time. By working through these parameters with an electrochemical manufacturer, such as Electrolube, it is possible to quickly find the most suitable solution for the application and therefore ensure the performance of the wearable device during its working life.

Whatever the application, the wearables market is definitely a hot topic. Some say that 2015 was the year of the wearable, where others feel there is still more work to be done. A large number of devices are still in their testing phase and performance benefits of use and long-term reliability need to be confirmed. The concept and new developments in this field are what will continue in the future and with the variety of devices possible will come the vast array of requirements which will define the need for suitable protection medium.

Wearable technology is designed with the intention to make everyday tasks easier and more accessible. It will encourage different methods of interaction and communication, again increasing our mobility within the electronic world and thus shall further enhance relationships and collaborations in this field.


Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Revolutionising clean air in electronics manufacturing
Allan McKinnon & Associates Manufacturing / Production Technology, Hardware & Services
Designed to prioritise clean air in the electronics manufacturing industry, the ZeroSmog Shield Pro sets a new standard for workplace health and safety.

High-speed multi-function dispensing
Techmet Manufacturing / Production Technology, Hardware & Services
The D-VIS and DL-VIS from GKG SMT printer specialists are high-speed dispensing systems that can handle multiple scenarios.

Optical inspection for SMT
Techmet Manufacturing / Production Technology, Hardware & Services
The Xpection 1860 from Scienscope is a versatile X-ray inspection machine that offers comprehensive circuit board defect detection and quality assurance for the SMT industry.

Yamaha introduces upgrades to its 3D AOI systems
Truth Electronic Manufacturing Manufacturing / Production Technology, Hardware & Services
Yamaha Robotics SMT section has revealed performance-boosting upgrades for the YRi-V 3D AOI system, including faster board handling, multi-component alignment checking, and enhanced LED coplanarity measurement.

Flexible printed electronics substrates
Manufacturing / Production Technology, Hardware & Services
New LEXAN CXT film from SABIC offers high thermal process stability and transparency for demanding printed electronics substrates.

Lead-free solder paste
Techmet Manufacturing / Production Technology, Hardware & Services
Indium8.9HF is an air reflow, no-clean solder paste specifically formulated to accommodate the higher processing temperatures required by SnAgCu, SnAg, and other alloys.

Analog Devices and Mouser collaborate on eBook
Manufacturing / Production Technology, Hardware & Services
Mouser has released a new eBook in collaboration with Analog Devices, that offers a detailed analysis of the technologies being used to support sustainable manufacturing practices.

Improved precision laser marking
RS South Africa Manufacturing / Production Technology, Hardware & Services
On-the-fly marking at high speeds is only one of the comprehensive features of Panasonic’s new LP-RH laser marker series.

Optimising AOI performance
Rugged Interconnect Technologies Manufacturing / Production Technology, Hardware & Services
Optimising AOI performance is now a reality with the highly integrated ADLINK MVP-6200, combined with Intel Arc GPUs.

High-mix SMT solution from Panasonic
Techmet Manufacturing / Production Technology, Hardware & Services
Only one machine is required to get production started, and adding more units and/or technologies as demand changes is easy to accomplish.