Manufacturing / Production Technology, Hardware & Services


Curie point vs. conventional hand soldering technology

5 October 2016 Manufacturing / Production Technology, Hardware & Services

With today’s delicate and complex electronics, temperature accuracy is a consistent challenge. Component density, lead size and thermally sensitive components all combine to make the demands of process control difficult to meet.

Soldering in electronics assembly processes is primarily used to provide a convenient joint or connection to ensure electrical contact. Solders do not typically provide high mechanical strength, given the soft nature of most common solder materials.

While many of these soldering processes today are automated, there is still a high demand for hand soldering in the electronics industry, especially for odd sized components, low-volume applications and repair and rework of printed circuit boards.

Figure 1. Key elements of a hand soldering process.
Figure 1. Key elements of a hand soldering process.

To understand how to make a good solder joint or connection, it is first necessary to understand the conditions necessary to achieve a successful result.

Soldering is a process by which two metals are joined together with a third metal or alloy. The third metal or alloy has a much lower melting point compared to the first two metals. In adhesive joining, adhesives bond by mechanical attraction, having to do with the mechanical surface properties of the material being joined, relative to the adhesive.

Figure 2. Oxidation is a common problem with conventional soldering iron technology.
Figure 2. Oxidation is a common problem with conventional soldering iron technology.

In soldering there is also a chemical reaction in addition to the physical reaction. Therefore, to achieve a good solder joint it is necessary to consider the following:

• Intermetallic layer

• Solder joint structure

• Joint temperature (MIL standard)

• Formation of reliable solder joints

• Tip temperature vs. joint temperature

• Maintenance of the soldering profile (as in a reflow oven)

• Heating technology (high-frequency Curie heating vs. conventional ceramic heater technology)

One of the most important considerations in hand soldering is the formation of the intermetallic layer, in other words the chemical joining of the solder, copper and other materials found in the contact area. Without an intermetallic layer there is no valid solder joint, but once created it grows at any temperature and accelerates exponentially as the temperature increases.

Figure 3. Circuit diagram representing induction heating process.
Figure 3. Circuit diagram representing induction heating process.

In this soldering process, temperature control is paramount since excessive heat (overshoot of temperature) will potentially cause differences in the CTE (coefficient of thermal expansion) and result in brittle or stressed joints which are then subject to failure.

In general, soldering should be done as quickly as possible, (a 2 – 5 second window), the lowest possible soldering temperatures should be selected and repeated soldering of the joint should be avoided. Solder joint temperature is, therefore, one of the key elements in ensuring a successful connection.

MIL-STD (military standard)

Table 1. MIL-STD soldering temperatures for various solder formulations.
Table 1. MIL-STD soldering temperatures for various solder formulations.

According to commonly adopted MIL-STD standards (see Table 1), joint temperature is the solder melting temperature plus 40°C, and the solder tip touches joint for typically 2-5 seconds. For this reason a soldering iron providing better thermal transfer is capable of using a lower tip temperature to deliver enough thermal energy to form a reliable solder joint.

Soldering irons with less efficient thermal transfer properties will require higher temperatures to achieve the same result – but at the risk of forming a thicker metallic layer which will be prone to failure under stress and also potentially causing damage to sensitive components and the pad. This requirement for efficient thermal transfer was exemplified in 2003 with the introduction of RoHS and the need to meet the higher demands of lead-free solders.

Figure 4. Curie Heat technology avoids the oxidation suffered by conventional soldering iron heating technology.
Figure 4. Curie Heat technology avoids the oxidation suffered by conventional soldering iron heating technology.

Most hand soldering iron companies responded by trying to improve heat transfer or by increasing solder melt temperatures. However, in doing so, other problems were created, for example solder splatter, decreased tip life, tip-to-ground resistance issues, tip-to-ground voltage leakage problems, and overshoot of temperature.

In part this is due to the design of conventional technology soldering irons which rely on a thermocouple, with a dial or LCD display to control temperature and which require regular calibration to ensure a minimum of accuracy. However, all the problems associated with conventional soldering irons can be avoided by adopting Thermaltronics Curie Heat technology.

Those familiar with the phrase ‘Curie point’ will know that every magnetic alloy, when heated, will, at a certain temperature, lose its magnetism. Therefore, by a simple method of using different magnetic alloys, combined with an induction heating process, Thermaltronics has created a range of soldering systems which can meet the soldering demands of but with none of the pitfalls of conventional soldering irons.

The heart of the Thermaltronics high-frequency soldering system is the combined tip/cartridge which incorporates the magnetic alloy heater, the centre of which is made of copper. Different magnetic alloys are used to achieve differing temperatures but at idle (while in the soldering stand) the temperature of an individual tip/cartridge will be maintained within the range of ±1,1°C. (Temperatures of individual tips will vary due to the amount of copper mass but each tip will still maintain its own unique temperature profile within a defined range.)

When power is generated from a Thermaltronics power supply, current flows through the handpiece (on the surface of the magnetic alloy) and will, in turn, induce heat. However, once the Curie point is reached and the magnetism is lost, the current can no longer flow and as a consequence the alloy will cool. In so doing the magnetism returns and the heating process starts all over again.

Needless to say all this is happening in microseconds and, as shown in Figure 5, it is repeatable and by far the most efficient way to control temperature. Basically it boils down to pure physics, i.e., it is not reliant on dials, thermocouples or other control mechanisms.

Figure 5. Illustration of the Curie point heating process.
Figure 5. Illustration of the Curie point heating process.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

20 years of precision, progress and purpose – the Jemstech journey
Jemstech Editor's Choice Manufacturing / Production Technology, Hardware & Services
Twenty years ago, Jemstech began as a small, determined venture built on technical excellence and trust. Today, it stands among South Africa’s leading electronic manufacturing service providers.

Read more...
An argument to redefine IPC class definitions for class 1, 2, & 3 electronics
MyKay Tronics Manufacturing / Production Technology, Hardware & Services
One of the most critical aspects of electronic assembly reliability is cleanliness. Contaminants left on a circuit board after the reflow process can lead to failures through mechanisms such as electrochemical migration or corrosion.

Read more...
Large platform stencil printer
Techmet Manufacturing / Production Technology, Hardware & Services
GKG’s large platform stencil printer, the P-Primo, is designed to meet customer’s ultra-large printing requirements by supporting board dimensions up to 850 x 610 mm.

Read more...
Press-fit component inspection
MyKay Tronics Manufacturing / Production Technology, Hardware & Services
In electronics manufacturing, optical inspection of press-fit components is crucial to ensure the quality, reliability, and performance of the final assembled product.

Read more...
A new era in wire bond inspection
Techmet Editor's Choice Manufacturing / Production Technology, Hardware & Services
Viscom is developing a 3D wire bond inspection system that incorporates substantially improved sensors, a high image resolution, and fast image data processing.

Read more...
High-speed, high-resolution material deposition system
Manufacturing / Production Technology, Hardware & Services
ioTech recently unveiled the io600 inline digital laser material deposition system at productronica 2025.

Read more...
Mycronic’s MYPro A40 pick-and-place solution
MyKay Tronics Manufacturing / Production Technology, Hardware & Services
Mycronic’s MYPro A40 pick-and-place solution, equipped with an MX7 high-speed mounthead technology, increases top placement speeds by 48% over the previous generation.

Read more...
Why ergonomics matters in digital microscopy
TANDM Manufacturing / Production Technology, Hardware & Services
While magnification technology has kept pace with demand, the wellbeing of the people behind the microscopes has often been overlooked with technicians spending long hours in intense focus, leading to chronic strain, fatigue, and costly mistakes.

Read more...
From ER to effortless: The 15-year journey of Seven Labs Technology
Seven Labs Technology Editor's Choice Manufacturing / Production Technology, Hardware & Services
What started as a business likened to an ‘ER’ for electronic components has today grown into a trusted partner delivering kitting services and full turnkey solutions – taking the effort out of electronics and helping customers truly ‘Move to Effortless.’

Read more...
Choosing the right electrical component supplier for reliability and scale
Rebound Electronics Manufacturing / Production Technology, Hardware & Services
Selecting the right supplier extends beyond cost or delivery time; it is about ensuring long-term reliability, compliance, and scalability.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved