Power Electronics / Power Management


Using 800 V CoolMOS P7 to power flyback designs

14 June 2017 Power Electronics / Power Management

Smaller, smarter and more powerful are market trends for low-power switched-mode power supply (SMPS) applications.

Smaller requires the SMPS to have a more compact form factor, and thus higher power density. Smarter requires intelligent system-to-system/system-to-human communication to ensure the systems are environment- and human-friendly. More powerful requires the SMPS to output more power to supply energy to many different devices in order to save cost for consumers.

These trends expose engineers to new SMPS design challenges. Because of higher output powers and smaller form factors leading to higher power densities, engineers need to spend more effort improving efficiency and managing overall system heat. At the same time, longer product lifetimes require engineers to optimise SMPS designs at a system level to improve reliability.

Benefits due to these market trends are obvious. A smaller size leads to space saving and makes systems more portable. Energy saving due to higher efficiency and smarter design helps consumers save money on electricity bills, as well as supporting a ‘greener’ world – as less power supplies are needed at home thus there is less pollution in production and less waste when it comes to end-of-life disposal.

Adaptors and chargers, LED lighting, audio SMPS, auxiliary power and industrial power are typical low-power SMPS markets where flyback topology is the most common topology. High-voltage (HV) MOSFETs play a fundamental role in this topology, which means that finding the right MOSFET is critical to meeting the challenges posed by market requirements.

Factors to consider when choosing HV MOSFETs for flyback based application

Determining the ‘right’ MOSFET for a flyback topology requires a solid, system-level understanding as well as the way the MOSFET is used in the application. State-of-the-art flyback designs switch HV MOSFETs at 40 kHz – 100 kHz to reduce the need for EMC optimisation, while other designs switch at higher frequencies in order to achieve size reductions associated with smaller magnetic components. Better light-load efficiency requires lower switching losses and high full-load efficiency requires lower low conduction losses.

For switching losses, Qg and Eoss are important MOSFET device parameters. Qg is closely linked with the effort to drive MOSFETs and smaller values lead to lower driving losses. Eoss is the energy consumed by the MOSFET when it switches on. RDS(on) is an important device parameter and determines conduction losses, which plays a critical role at full-load condition.

MOSFET ESD ruggedness is one area that is gaining more and more attention when it comes to MOSFET selection, as it helps to improve production yield and reduce field returns. Robustness, ease of driving and design-in also have to be considered by engineers who are under pressure to deliver fast time-to-market. VGS(th) and its deviation needs to be considered here: lower VGS(th) makes MOSFETs easier to drive while a smaller VGS(th) deviation gives designers more freedom in SMPS design.

CoolMOS P7 drives higher efficiency and thermal performance

The latest 800 V CoolMOS P7 from Infineon sets a new benchmark in 800 V superjunction technologies and combines best-in-class performance with state-of-the-art ease of use.

Table 1. Key parameter comparison for TO-220 FullPAK 450 mΩ equivalent part from different suppliers (test specification according to datasheet).
Table 1. Key parameter comparison for TO-220 FullPAK 450 mΩ equivalent part from different suppliers (test specification according to datasheet).

Table 1 gives an overview of key parameters for TO-220 FullPAK products with a maximum RDS(on) rating of between 400 mΩ and 450 mΩ. CoolMOS P7 has been fully optimised to deliver best-in-class performance. Compared to the nearest competitors, Qg and Ciss for CoolMOS P7 is improved by 17% and 10% respectively. In the case of EMoss and Ciss, a dramatic improvement of 43% to 45% has been observed. These optimisations significantly improve CoolMOS P7 efficiency and thermal performance as demonstrated in an 80 W dual stage flyback LED driver application (see Figure 1).

Figure 1. Relative efficiency (a) and thermal performance (b) comparison for devices listed in Table 1. Test condition: VAC=230 V; test board: 80 W LED driver, dual stage flyback, plug and replace flyback MOSFET.
Figure 1. Relative efficiency (a) and thermal performance (b) comparison for devices listed in Table 1. Test condition: VAC=230 V; test board: 80 W LED driver, dual stage flyback, plug and replace flyback MOSFET.

Simply replacing a CoolMOS C3 with a CoolMOS P7 leads to a better efficiency of 0,5% at light-load and an efficiency improvement of 0,3% at full-load condition (see Figure 1 (a)). The improvement at light-load reduces system idle losses, while at full-load the observed efficiency improvement leads to a better MOSFET temperature by 6°C, thus significantly reducing the overhead for thermal management.

There are typically two ways to realise the high power densities required in today’s market. One way is to use a HV MOSFET at high switching frequencies. This delivers better efficiency, while the high-frequency switching enables the system to use smaller magnetic components to reduce system size. CoolMOS P7 is able to address such designs with significantly lower switching losses.

The other method is to use a HV MOSFET with a smaller footprint. CoolMOS P7 also supports this approach by offering DPAK products with lower RDS(on) ratings. As indicated by Figure 2, CoolMOS P7 offers lower DPAK RDS(on) ratings of 450 mΩ, 360 mΩ and 280 mΩ with 280 mΩ as best-in-class, which is 56% lower as than that of the nearest competitors. Better DPAK products help customers save space to increase power density and reduce production costs by utilising fully automatic assembly processes (when changing from through-hole to SMD packages).

Figure 2. Overview of lowest DPAK R<sub>DS(on)</sub> for 800 V superjunction MOSFET.
Figure 2. Overview of lowest DPAK RDS(on) for 800 V superjunction MOSFET.

One of the most important features for the CoolMOS P7 product family is its integrated Zener diode, which reduces ESD related failures to improve quality and reliability. The Zener Diode is integrated into CoolMOS P7 between the gate and the source (see Figure 3 (a)), where its function is to provide ESD protection. As shown in Figure 3 (b), during an ESD event the voltage between gate and source (VGS) is clamped by the Zener diode.

Figure 3. (a) schematic of CoolMOSTM P7, (b) a zoomed-in view of the area between gate and source as highlighted in (a).
Figure 3. (a) schematic of CoolMOSTM P7, (b) a zoomed-in view of the area between gate and source as highlighted in (a).

Using the HBM ESD model, CoolMOS P7 ESD ruggedness is Class 1C for RDS(on) values between 2 Ω and 4,5 Ω. Below 2 Ω the HBM ESD ruggedness is Class 2. Using the CDM model, ESD ruggedness is Class C3. This ESD protection feature helps reduce ESD related failures during assembly, leading to lower production costs. It also helps reduce field returns by avoiding gate oxide overstress. This is an issue that leads to reduced MOSFET lifetime, making it possible for a MOSFET that does not fail during assembly to fail in the field.

CooMOSTM P7 offers 12 RDS(on) classes in six package variants for five main target applications: adaptor and charger, LED driver, audio SMPS, auxiliary and industrial power supplies. With fine granularity in RDS(on), designers can easily find a part for fine tuning their designs.

Designing with CoolMOS P7

CoolMOS P7 combines best-in-class efficiency with state-of-the-art ease of use. This product family is ideal for flyback applications with outputs up to 250 W. Infineon supports the design-in of CoolMOS P7 with a variety of application notes and reference designs, including a 45 W adaptor demonstration board.

For more information contact Davis Moodley, Infineon Technologies, +27 (0)11 706 6099, davis-moodley.external@infineon.com, www.infineon.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Automotive MOSFETs in a variety of packages
29 April 2020, Altron Arrow , Power Electronics / Power Management
Reducing CO2 emissions of passenger cars is accelerating 48 V board net adoption. For this emerging 48 V market, Infineon Technologies offers a broad portfolio of automotive 80 V and 100 V MOSFETs as ...

Read more...
DC-DC converter for aerospace/defence
25 March 2020, Future Electronics , Power Electronics / Power Management
Vicor announced the DCM5614, an isolated, regulated 270 V-28 V DC-DC converter with an output power rating of 1300 W in a 142,2 x 35,6 x 9,4 mm VIA package. Providing power density of 27,52 W/cm3 at a ...

Read more...
Switchers for high-power LED displays
25 March 2020, EBV Electrolink , Power Electronics / Power Management
Power Integrations’ InnoSwitch3-MX isolated switcher IC family has been expanded with the addition of three new PowiGaN devices. As part of a chipset with Power Integrations’ InnoMux controller IC, the ...

Read more...
Synchronous buck converter
29 April 2020, Altron Arrow , Power Electronics / Power Management
Diodes Incorporated introduced the AP62600 synchronous DC-DC buck converter for point-of-load (POL) conversion in applications such as TVs, monitors, white goods, home appliances, consumer electronics ...

Read more...
Tiny step-down regulator
29 April 2020, Altron Arrow , Power Electronics / Power Management
The LTM4657 is part of Analog Devices’ family of tiny, high-efficiency, identical pin-out, step-down µModule devices. The LTM4657 is designed to operate at lower switching frequencies than the LTM4626 ...

Read more...
Stackable DC-DC buck converter
29 April 2020, Avnet South Africa , Power Electronics / Power Management
Texas Instruments introduced a new 40 A SWIFT DC-DC buck converter, offering first-of-its-kind stackability of up to four ICs. The TPS546D24A PMBus buck converter can deliver up to 160 A of output current ...

Read more...
Open-frame configurable power supplies
29 April 2020, Vepac Electronics , Power Electronics / Power Management
The RB series of configurable open-frame power supplies has been expanded. Based on a unique concept, the Cosel RB series offers three configurable isolated outputs, with one having a reinforced isolation ...

Read more...
Why low quiescent current matters for longer battery life
29 April 2020, Avnet South Africa , Power Electronics / Power Management
From healthcare and biosensing to wearables and environmental sensing, nearly all IoT devices rely on batteries that must perform reliably and over an extended period of time in a variety of conditions.

Read more...
Bipolar DC-DC supply design sources and sinks current
29 April 2020, Altron Arrow , Power Electronics / Power Management
Most electronic systems depend on power voltage rails that are either positive or negative, but a few applications require individual rails that can be both. In these situations, positive or negative ...

Read more...
DC-DC converter adds 80 W output
29 April 2020, Vepac Electronics , Power Electronics / Power Management
The popular MG series, with its 10 year warranty, has been extended again by Cosel with the addition of 80 W output models in the MGFS and MGFW family. Offering 4:1 input voltage ranges of 9-36 V or 18-76 V, ...

Read more...