Editor's Choice


Production cycle of a sealed lead-acid battery

15 November 2017 Editor's Choice Power Electronics / Power Management

It’s easy when commissioning or simply plugging a battery into the device it is destined for, to overlook all the steps that went into its production. Often the minerals that are used in making a battery are mined in one country and processed in another, for example, and by the time it leaves the factory it will have undergone numerous quality checks. Just as it can be enlightening to know where our food comes from (and some people insist on knowing), understanding what goes into making a sealed lead-acid (SLA) battery can provide assurance that it was created with care, and confidence that it can be trusted to power its application reliably.

The manufacturing process of an SLA battery can be broadly divided into the following stages: oxide and grid production; pasting and curing; plate formation; assembly; electrolyte filling; charge-discharge process;, finished product inspection; packing and dispatch.

Oxide and grid production

First of all, a lead ingot is ground into lead powder and gets oxidised, then mixed with the alloy additive. This is the basic material that makes up the battery pastes. To make a grid it needs to be cast, which is done by melting the material in a melting pot, and then pouring this molten lead into the patterns of the battery grid. By contrast, when a stamping operation is used, the battery grids are made by stamping them from lead sheets. Once these grids have cooled after casting, they are passed to a trimming machine to trim the rough edges and casting gates.

Plate production

There are several steps involves in producing the battery plates. These include pasting, curing, plate formation, drying, polishing and cutting.

Pasting is probably the most important aspect because the material and formula of the paste is a top secret to the battery’s manufacturer. The paste contains the active material for the grid and is the essential ingredient in creating a reaction in the cell.

These pastes are used to fill the positive and negative grids, but they are not all the same. Depending on the design, they can be made up of different chemical compounds mixed in different proportions to generate the active materials for the battery cell. These pastes are then forced on the interstices of the grids to make the pasted plates. These pasted plates will be cured in ovens under controlled conditions of temperature and humidity, after which they are allowed to dry at ambient temperatures.

The next step is plate formation, whereby the plates are dipped into the sulphuric acid mixer and then charged by using a rectifier. This process continues for around 16 to 24 hours. After that, the plates are moved into the wash tank, then sent to an oven for drying.

The final production step the plates need to go through is the polish and cutting process. after which they are ready for assembly.

Assembling and filling

In this stage, all the component parts – plates, separators, cover, safety valves, O-rings and terminals – are assembled into a battery case and then sealed. This in turn requires several steps such as plate stacking, insertion of separators, group welding, cell insertion, cross-bridge welding (inter-cell connector and plate connecting), cover sealing, terminal placing and electrolyte filling.

In the stacking step, positive and negative plates are strapped to a suitable rack, stacked together and a separator is inserted in between them. The common type of separator used in an SLA battery is AGM (absorbent glass mat) which is a glass mat specially designed to wick the battery electrolyte between the battery plates.

The purpose of the welding process is to collect the stack of plates and separators to form a solid group; these elements are then inserted into the battery cells and welded to the respective positive and negative posts on the battery’s case top.

Following that, what remains to be done is to place the terminals and weld the poles, and then put on the cover to seal the battery. At this stage the only thing still to be done to complete the assembly process is to fill the battery with electrolyte, then send it for the first charge of its life.

Charging, inspection and packing

A battery’s charging process must be carefully controlled, and may require 36 to 48 hours depending on its size. A low charging rate is generally employed such that the battery will be discharged and recharged several times to attain the best working conditions.

After charging and discharging, the battery will be set aside for 5 to 7 days, during which it will undergo several inspections and tests by specialised instruments. Before it can be sent for packaging, it also needs to pass a capacity test, OCV interior resistance test and high rate discharge test to rule out any defects.

Finally, the battery is now ready to be packaged, shipped and delivered to the customer to install and commission it in preparation for a long and productive life in its intended application.

For more information contact Forbatt SA, +27 (0)11 469 3598, sales@forbatt.co, www.forbatt.co



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Why you don’t take ‘touch’ for granted
30 September 2020 , Editor's Choice
The key criteria for choosing the right sensor control IC          Touch has become an incredibly intuitive way for people to interact with high-tech devices. In just a few short years after the first ...

Read more...
Ask your PCB supplier about reliability, not just capability
28 October 2020, Elmatica , Editor's Choice, Manufacturing / Production Technology, Hardware & Services
Make sure to discuss combinations and how your solution affects risk of failure with the multiple heat cycles required to assemble the product, and the risk of failure in the final application.

Read more...
How you can help your EMS partner
28 October 2020, Jemstech , Editor's Choice, Manufacturing / Production Technology, Hardware & Services
If you want a good quality, reasonably priced product in a quick turnaround time, always communicate your assembly requirements effectively with your EMS partner.

Read more...
Practical experience with PCB robotic soldering processes
28 October 2020 , Editor's Choice, Manufacturing / Production Technology, Hardware & Services
Over the past few years there has been a lot of discussion over the need for higher temperature materials and expanding the use and knowledge of high temperature assembly techniques.

Read more...
TRX welcomes Hannes Taute as new MD
28 October 2020, TRX Electronics , Editor's Choice, News
We delve into his background, what his plans for TRX Electronics are, and how he envisions what the future of the local electronics industry will look like.

Read more...
Personality profile: Hosia Matlou
28 October 2020 , Editor's Choice
“To make a success in the very niche electronics manufacturing market, I believe it’s important to have experience in both engineering and business management.”

Read more...
Stability in turbulent times
28 October 2020, Omnigo , Editor's Choice
Omnigo’s Pieter de Nysschen discusses the importance of staying positive and motivated during these hard times when the whole world seems to have been turned upside down.

Read more...
Women taking the lead in engineering
31 August 2020 , Editor's Choice, News
Alaris Antennas is an engineering company specialising in the design and production of (often) customised antennas for electronic warfare. This is not an industry that typically attracts women to steer ...

Read more...
Smoke detection matters
30 September 2020, Altron Arrow , Editor's Choice, Analogue, Mixed Signal, LSI
Smoke detection regulations are critically important when the value proposition is as basic as human life itself.

Read more...
Personality profile: Mervyn Stocks
30 September 2020, Denver Technical Products , Editor's Choice
Mervyn Stocks, the founder and MD of Denver Technical Products, started his career as a learner technician, worked at some well-known companies in the industry before setting out on his own.

Read more...