mobile | classic
Dataweek Electronics & Communications Technology Magazine





Follow us on:
Follow us on Facebook Share via Twitter Share via LinkedIn


Search...

Electronics Buyers' Guide

Electronics Manufacturing & Production Handbook 2019


 

Series and parallel battery configurations
21 February 2018, This Week's Editor's Pick, Power Electronics / Power Management

Batteries achieve the desired operating voltage by connecting several cells in series; each cell adds its voltage potential to arrive at the total terminal voltage. Parallel connection attains higher capacity by adding up the total ampere-hour (Ah).

Some packs may consist of a combination of series and parallel connections. Laptop batteries commonly have four 3,6 V Li-ion cells in series to achieve a nominal voltage 14,4 V, and two in parallel to boost the capacity from 2400 mAh to 4800 mAh. Such a configuration is called 4S2P, meaning four cells in series and two in parallel. Insulating foil between the cells prevents the conductive metallic skin from causing an electrical short.

Most battery chemistries lend themselves to series and parallel connection. It is important to use the same battery type with equal voltage and capacity (Ah) and never to mix different makes and sizes. A weaker cell would cause an imbalance. This is especially critical in a series configuration because a battery is only as strong as the weakest link in the chain. An analogy is a chain in which the links represent the cells of a battery connected in series (Figure 1).

Figure 1: Comparing a battery with a chain.
Figure 1: Comparing a battery with a chain.

A weak cell may not fail immediately but will get exhausted more quickly than the strong ones when on a load. On charge, the low cell fills up before the strong ones because there is less to fill and it remains in over-charge longer than the others. On discharge, the weak cell empties first and gets hammered by the stronger brothers. Cells in multi-packs must be matched, especially when used under heavy loads.

Single-cell applications

The single-cell configuration is the simplest battery pack; the cell does not need matching and the protection circuit on a small Li-ion cell can be kept simple. Typical examples are mobile phones and tablets with one 3,60 V Li-ion cell. Other uses of a single cell are wall clocks, which typically use a 1,5 V alkaline cell, wristwatches and memory backup, most of which are very low-power applications.

Series connection

Portable equipment needing higher voltages use battery packs with two or more cells connected in series. Figure 2 shows a battery pack with four 3,6 V Li-ion cells in series, also known as 4S, to produce 14,4 V nominal. In comparison, a six-cell lead acid string with 2 V/cell will generate 12 V, and four alkaline with 1,5 V/cell will give 6 V.

Figure 2: Series connection of four cells (4S).
Figure 2: Series connection of four cells (4S).

If you need an odd voltage of, say, 9,50 volts, connect five lead acid, eight NiMH or NiCd, or three Li-ion in series. The end battery voltage does not need to be exact as long as it is higher than what the device specifies. A 12 V supply might work in lieu of 9,50 V. Most battery-operated devices can tolerate some over-voltage; the end-of-discharge voltage must be respected, however.

Parallel connection

Figure 3: Parallel connection of four cells (4P).
Figure 3: Parallel connection of four cells (4P).

If higher currents are needed and larger cells are not available or do not fit the design constraint, one or more cells can be connected in parallel. Most battery chemistries allow parallel configurations with little side effect. Figure 3 illustrates four cells connected in parallel in a P4 arrangement. The nominal voltage of the illustrated pack remains at 3,60 V, but the capacity (Ah) and runtime are increased fourfold.

A cell that develops high resistance or opens is less critical in a parallel circuit than in a series configuration, but a failing cell will reduce the total load capability. It’s like an engine only firing on three cylinders instead of on all four. An electrical short, on the other hand, is more serious as the faulty cell drains energy from the other cells, causing a fire hazard. Most so-called electrical shorts are mild and manifest themselves as elevated self-discharge.

A total short can occur through reverse polarisation or dendrite growth. Large packs often include a fuse that disconnects the failing cell from the parallel circuit if it were to short. Figure 4 illustrates a parallel configuration with one faulty cell.

Figure 4: Parallel/connection with one faulty cell.
Figure 4: Parallel/connection with one faulty cell.

A weak cell will not affect the voltage but provide a low runtime due to reduced capacity. A shorted cell could cause excessive heat and become a fire hazard. On larger packs a fuse prevents high current by isolating the cell.

Series/parallel connection

The series/parallel configuration shown in Figure 5 enables design flexibility and achieves the desired voltage and current ratings with a standard cell size. The total power is the product of voltage times current; four 3,6 V (nominal) cells multiplied by 3400 mAh produce 12,24 Wh. Four 18650 energy cells of 3400 mAh each can be connected in series and parallel as shown to get 7,2 V nominal and 12,24 Wh. The slim cell allows flexible pack design but a protection circuit is needed.

Li-ion lends itself well to series/parallel configurations but the cells need monitoring to stay within voltage and current limits. Integrated circuits (ICs) for various cell combinations are available to supervise up to 13 Li-ion cells. Larger packs need custom circuits, and this applies to e-bike batteries, hybrid cars and the Tesla Model 85 that devours over 7000 18650 cells to make up the 90 kWh pack.

Figure 5: Series/ parallel connection of four cells (2S2P).
Figure 5: Series/ parallel connection of four cells (2S2P).

Terminology to describe series and parallel connection

The battery industry specifies the number of cells in series first, followed by the cells placed in parallel. An example is 2S2P. With Li-ion, the parallel strings are always made first; the completed parallel units are then placed in series. Li-ion is a voltage-based system that lends itself well for parallel formation. Combining several cells into a parallel and then adding the units serially reduces complexity in terms of voltage control for pack protection.

Building series strings first and then placing them in in parallel may be more common with NiCd packs to satisfy the chemical shuttle mechanism that balances charge at the top of charge. 2S2P is common; white papers have been issued that refer to 2P2S when a serial string is paralleled.

Safety devices in series and parallel connection

Positive temperature coefficient (PTC) switches and charge interrupt devices (CID) protect the battery from over-current and excessive pressure. While recommended for safety in a smaller 2- or 3-cell pack with serial and parallel configuration, these protection devices are often being omitted in larger multi-cell batteries, such as those for power tools.

The PTC and CID work as expected to switch off the cell on excessive current and internal cell pressure; however the shutdown occurs in cascade format. While some cells may go offline early, the load current causes excess current on the remaining cells. Such an overload condition could lead to a thermal runaway before the remaining safety devices activate.

For more information contact Michael Rogers, Uniross Batteries, +27 (0)11 466 1156, michael.rogers@uniross.co.za, www.uniross.co.za


Credit(s)
Supplied By: Uniross Batteries
Tel: +27 11 466 1156
Fax: +27 11 466 9109
Email: info@uniross.co.za
www: www.uniross.co.za
  Share on Facebook Share via Twitter Share via LinkedIn    

Further reading:

  • AI on a chip
    26 June 2019, News, This Week's Editor's Pick
    Researchers have created a machine learning library programmed in C that can run on microcontrollers, and on other platforms such as PCs, Raspberry PI and Android.
  • Better thermal management enabled by advances in semiconductor packaging
    26 June 2019, TRX Electronics, Power Electronics / Power Management, This Week's Editor's Pick
    Beyond the realm of traditional thermal management solutions, the latest IC packaging technologies are making a significant contribution to satisfying the exacting thermal demands of modern electronic designs.
  • Solar-powered bakery developed at UJ
    26 June 2019, Power Electronics / Power Management, This Week's Editor's Pick
    When used as a tool for community development, the Solar Bread Box becomes a self-sustaining, economy stimulating, job creating and skills development platform.
  • How to design AC-DC power supplies for long life
    26 June 2019, Accutronics, Power Electronics / Power Management, This Week's Editor's Pick
    There are many things that impact the life of a power supply, overstressed components being the main one. All components have a life that is affected by temperature; some components are more strongly ...
  • The ultimate wireless mesh for Industrial IoT in SA?
    29 May 2019, Altron Arrow, This Week's Editor's Pick, Telecoms, Datacoms, Wireless, IoT
    Analog Devices’ SmartMesh could help with predictive maintenance of the largely metal and concrete buildings which include industrial plants, data centres, commercial buildings, bridges and tunnels.
  • Passive RFID using UHF delivers long-range benefits in the IoT
    29 May 2019, Avnet South Africa, This Week's Editor's Pick, Telecoms, Datacoms, Wireless, IoT
    In order to support the use of UHF RFID as an IoT solution, a global alliance was formed in 2014 by Google, Intel, Impinj, Smartrac and AIM.
  • To ICASA or not to ICASA wireless modules?
    29 May 2019, Otto Wireless, This Week's Editor's Pick, Telecoms, Datacoms, Wireless, IoT
    When selecting a wireless module, purchasing an ICASA approved device or module from the approved supplier is critical.
  • Using a COTS-based SDR platform for streamlined 5G development
    29 May 2019, Rugged Interconnect Technologies, This Week's Editor's Pick, Telecoms, Datacoms, Wireless, IoT
    The latest SDR products offer solutions with integrated I/O, ARM processors, and large FPGAs that include intellectual property (IP) for accessing, routing and processing digital data.
  • Is the supply chain broken?
    30 April 2019, Electrocomp, Diel Met Systems, ExecuKit, NuVision Electronics, RF Design, This Week's Editor's Pick, News
    The world’s insatiable demand for electronic goods has created a monster: a supply chain that spans the globe and relies on the entirety of our collective knowledge and experience in the pursuit of industry.
  • Choosing the right connector for harsh environments
    30 April 2019, TRX Electronics, This Week's Editor's Pick, Interconnection
    While connectors are sometimes left to last in a system design, they are essential components, and you need to get their selection right.
  • Taking control the easy way
    30 April 2019, Otto Wireless, This Week's Editor's Pick, Telecoms, Datacoms, Wireless, IoT
    As a wireless supplier, Otto Wireless Solutions is very often drawn into assisting clients when it comes to integrating our routers into final products. There are a few common questions we get asked, ...
  • Continued success for Zetech’s stencils division
    30 April 2019, Zetech, This Week's Editor's Pick, News, Manufacturing / Production Technology, Hardware & Services
    Best known for supplying SMT (surface mount technology) equipment and consumables for printed circuit board assembly for 33 years, Zetech is enjoying success with its more recently established stencils ...

 
 
         
Contact:
Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronics Buyers’ Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Other
Terms & conditions of use, including privacy policy
PAIA Manual





 

         
    Classic | Mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.