Circuit & System Protection


EMI compliance testing vs. pre-compliance testing

25 September 2019 Circuit & System Protection

Electromagnetic interference (EMI) is caused by unintentional emissions from electronic equipment. Compared to natural sources of EMI, such as lightning and solar storms, engineers are more concerned about man-made, unintentional EMI emissions. Devices that emit these range from modern cellular communication systems and broadcasting systems to a host of electrical components, which generate burst, pulse, CW or modulated signals.

To gain global market access for their products, the manufacturers of electronic devices must comply with region- or country-specific EMC (electromagnetic compliance) directives and ensure that their devices are compliant.


Figure 1. A typical product development cycle and where EMC testing should occur.

The value of EMI pre-compliance testing

Reduce the risk of failing EMI compliance at the end of a project

Most manufacturers prefer to have their products certified by an authorised third-party service provider that is familiar with global standards and requirements. EMI compliance testing would ensure that products are completely certified.

However, EMI compliance tests are usually conducted at the end of project.

Referring to the product development cycle chart below, you can see that 90% of tests and measurements (including EMI diagnostic tests) happen during the prototyping and pilot run phases. EMI compliance tests, on the other hand, comprise only 10% of the process and occur at the end of a project.

EMI compliance test failures can be costly for a project team, time- and money-wise. Therefore, you should take the opportunity during the early stages of a product development cycle to minimise the risk of failing an EMI compliance test by conducting EMI diagnostic tests or pre-compliance tests.


Table 1. The differences between EMI compliance and pre-compliance testing.

Identify exact EMI sources

It can be difficult to tell where EMI failures are coming from since compliance tests themselves won’t tell you where exactly the source of the problem is. Radiated emissions may come from a USB port, a LAN port, the seam of a shield, a cable, a buffer, a clock or even a power cord.

You need to either troubleshoot yourself or obtain troubleshooting services from a lab or a third party. In this situation, near-field tests are the only way to locate such emission sources and are typically performed using a signal analyser and a set of near-field probes.

The functionality of an EMI receiver and a general-purpose signal analyser optimised for EMI emissions measurement applications is similar. EMI pre-compliance tests can be covered by either EMI receivers or signal analysers with basic EMI features such as CISPR 16-1-1 compliant detectors and resolution bandwidth. Signal analysers are usually less expensive than EMI receivers.

EMI compliance testing also requires conformance to a standard testing environment, which is hard for the majority of companies to achieve.

In short, EMI receivers enable you to do full compliance testing. They have been designed with all the compliance standards in mind and most organisations recommend using an EMI receiver for EMI applications.

On the other hand, general-purpose signal analysers can be used for pre-compliance testing. Signal analysers are a versatile tool and can be optimised to be used for EMI testing. If you are an RF engineer in the early R&D; product development phase, a signal analyser equipped with basic EMI features will provide just enough functionality for pre-compliance testing.

Conclusion

The advantage of running an EMI pre-compliance test with a signal analyser is that you can make a good estimation of the EMI performance of your new product and reduce the risk of failing EMI compliance at the end of a project.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Clearing the Static: Understanding the significance of ESD audits
Actum Electronics Circuit & System Protection
An ESD (Electrostatic Discharge) audit is the first step in establishing an ESD plan, and it is important to include all areas where ESD-sensitive components are being handled.

Read more...
Microchip introduces ECC608 TrustMANAGER
Altron Arrow Circuit & System Protection
To increase security on IoT products and facilitate easier setup and management, Microchip Technology has added the ECC608 TrustMANAGER with Kudelski IoT keySTREAM, Software as a Service (SaaS) to its Trust Platform portfolio of devices, services and tools.

Read more...
Varistors for automotive applications
Future Electronics Circuit & System Protection
TDK Corporation has announced the addition of two new varistors to its AVRH series for automotive applications where both are characterised by the high electrostatic discharge-withstanding voltage demanded to ensure the safe operation of safety-critical automotive functions.

Read more...
Clearing the Static: The importance of ESD wrist straps
Actum Electronics Circuit & System Protection
ESD clothing plays a pivotal role in preventing that people do not charge the products that they are working with.

Read more...
E-mobility: Navigate safety, interoperability and conformance
Concilium Technologies News
In this whitepaper, these challenges are discussed in more detail and the question is asked: How can EV and EVSE manufacturers navigate a complex regulatory landscape and deliver a quality product, without compromising time-to-market projections?

Read more...
Clearing the Static: ESD clothing and footwear
Actum Electronics Circuit & System Protection
ESD clothing plays a pivotal role in preventing that people do not charge the products that they are working with.

Read more...
Single-phase EMC filters
RS South Africa Circuit & System Protection
TDK Corporation has expanded its portfolio of single-phase EMC filters for AC and DC applications up to 250 V and rated currents from 6 to 30 A.

Read more...
Clearing the Static: The significance of cleaning in ESD control
Actum Group Circuit & System Protection
It is essential that ESD-protected workplace areas and equipment (tables, floors, work mats, trays, tools, machine elements) are cleaned with specialised antistatic cleaners.

Read more...
Clearing the Static: ESD protective packaging
Actum Group Circuit & System Protection
The primary objective of ESD protective packaging is to prevent ESD incidents within the packaging and facilitate the dissipation of charges from the outer surface.

Read more...
Battery emulator and profiler
Concilium Technologies Power Electronics / Power Management
Keysight designed the E36731A battery emulator and profiler, and BV9211B advanced battery test and emulation software, to solve problems associated with battery run-down tests.

Read more...