Manufacturing / Production Technology, Hardware & Services


The importance of paying attention to component specifications

EMP 2018 Electronics Manufacturing & Production Handbook Manufacturing / Production Technology, Hardware & Services

The theory is simple: process electronics assemblies in spec every time and you will end up with a quality product.

In practice, this is more difficult for numerous reasons, including normal and abnormal process variation, human error and more.

But first, let’s be clear on what our process specifications really are.

Critical components such as LEDs, crystals, bottom-terminated components (BTC) including micro BGAs, and others have very specific process limits that can be challenging to achieve and devastating when missed. Electronics assemblers must fully understand the nomenclature and process window definitions before setting up their assembly machines. Maximum rising and falling slope limits when reflowing PCBs represent a common source of misunderstanding and failures.

Figure 1. Example of thermal process specifications for an LED component.
Figure 1. Example of thermal process specifications for an LED component.

Take an LED component as an example. Figure 1 shows a typical reflow process window or process limits for such a component (the terms slope and gradient are used interchangeably in this article).

Figure 1 appears easy and straightforward, right? Wrong. The devil is in the details, and the downside of getting it wrong is significant. First, a definition of a temperature slope: ‘the rate of temperature change with distance or time.’ In a thermal profile, this will be measured in °C or K (Kelvin) per second.

Figure 2. Average slope measurements.
Figure 2. Average slope measurements.

A common mistake is to calculate maximum rising and falling temperature gradients as a linear measurement from the start of the profile to peak temperature, and from the peak temperature to the end of the profile (Figure 2). These calculations are misleading and very different from the maximum slope because they average the various slope calculations along the profile. It reminds me of the old joke about the statistician, with his head in the oven and his feet in the refrigerator, who stated that the average temperature was comfortable.

To find the correct measurement of the slope, we need one more specification: the distance or time over which the slope will be measured. Reading the fine print in the LED component spec limits, we could find the following (as an example): maximum rising slope to be measured over 10 second intervals.

Figure 3. 10 second slope measurements in increments of 1 second.
Figure 3. 10 second slope measurements in increments of 1 second.

To calculate the maximum rising slope for the LED example above, we need to measure each 10 second slope along the profile from the beginning to peak temperature. To do that we select the profile temperature at 10 seconds, subtract the temperature at 0 seconds, and divide by 10 seconds. Next, we calculate the profile temperature at 11 seconds, subtract the temperature at 1 second and divide by 10 seconds and so forth. The calculations will continue in 1 second increments until the peak.

Finally, the highest number of all these calculations represents maximum rising slope. You will note that the 10 second maximum gradient measurement is significantly higher than the average gradient. Similar calculations will be made on the falling slope, but the component supplier will likely specify a different acceptable limit along with new calculation guidelines. The cooling section of the profile has a shorter duration and may be susceptible to more volatile temperature variations. The component specification may call for maximum falling slope measurements over a 5 second interval instead.

Figure 4. Maximum rising slope calculations.
Figure 4. Maximum rising slope calculations.

The use of average instead of maximum slope calculations will be misleading, and it risks component damage. What makes this particularly worrisome is that stressing LEDs or other optoelectronic and electronic components may introduce latent defects that enable the PCB to pass the factory’s quality inspection, but may fail prematurely when in use.

This may seem very complicated, but with modern profiling software it is straightforward. The calculations are made in a fraction of a second. You just need to study the specs and set the profiling software to perform slope calculations at the component and solder paste suppliers’ specifications for time interval. The 10 and 5 second specification used in this article are only examples. Make sure that the profiling software is capable of measuring the maximum slope over any duration limit. If there are several temperature-sensitive components with different specs, two options are available:

1. Use the most stringent specification for all components.

2. If the profiler supports different specs for each thermocouple (TC), you can attach the TCs to the critical components, making sure all of them are within their individual specs. This will be easier to achieve than the ‘lowest common denominator’ approach in the first method.

The larger challenge will be to set up the reflow oven to achieve a profile that accommodates the more demanding slope specs when using the correct calculations. Again, modern profiling software with prediction algorithms will do a good job of automatically selecting the appropriate oven recipe.

If, however, the slope specifications are defined for you by your client, and your reflow oven is not capable of achieving them even with powerful prediction software, then you may need to investigate further. Ensure that everybody involved is clear on the full definition of your thermal process window and the correct methods to calculate it. This is not a discussion on semantics but whether you are running your production in or out of spec, with all the risk that it entails.

For more information contact Techmet, +27 (0)11 824 1427, [email protected], www.techmet.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

September exclusives at PCBWay: Big savings on PCBs and 3D printing
PCBWay Manufacturing / Production Technology, Hardware & Services
[Sponsored] This September, PCBWay is bringing you two exciting, limited time offers that showcase both style and versatility. Whether you are designing with PCBs or prototyping with 3D printing, these will help you create more while spending less.

Read more...
Understanding solder paste viscosity and thixotropy
Truth Electronic Manufacturing Manufacturing / Production Technology, Hardware & Services
A solder paste’s viscosity and thixotropic properties, a measure of its resistance to flow, influence its performance in different production environments.

Read more...
Global electronics trade in an age of disruption
Manufacturing / Production Technology, Hardware & Services
Governments should invest in domestic strengths, coordinate with international partners, and align trade and industrial policy with the realities of a globally connected electronics sector.

Read more...
The new tool design of IWISS
Startech Industrial Manufacturing / Production Technology, Hardware & Services
Rooted in IWISS’ dedication to reliability, comfort, and efficiency, the company’s new design refresh elevates craftsmanship by incorporating a rich cultural influence.

Read more...
Strategic collaboration to advance industrial robotics training in South Africa
Manufacturing / Production Technology, Hardware & Services
Yaskawa Southern Africa has announced a strategic collaboration with Sol-Tech, a private vocational training institution based in Pretoria, to strengthen technical education in industrial robotics.

Read more...
Filling high-end PCB manufacturing gaps to accelerate AI electronics growth
PCBWay Manufacturing / Production Technology, Hardware & Services
[Sponsored] In the digital era, AI and big data technologies are developing at a rapid pace. PCBWay is continuously advancing its PCB manufacturing technology to support the growth.

Read more...
Microtronix revives defunct cell phone plant
Microtronix Manufacturing Editor's Choice Manufacturing / Production Technology, Hardware & Services
In a significant move for South Africa’s struggling electronics manufacturing sector, local technology firm Microtronix has breathed new life into a formerly defunct cell phone manufacturing facility.

Read more...
Manufacturing with purpose
Production Logix Manufacturing / Production Technology, Hardware & Services
How Production Logix is setting a new benchmark for high-reliability, locally manufactured electronics.

Read more...
Recent purchase of Seica Flying Probe tester
ZETECH ONE Manufacturing / Production Technology, Hardware & Services
Zetech One recently supplied a Seica Flying Probe tester to Etion Create for use in the development and manufacture of its electronic solutions.

Read more...
Why accurate PCB measurement is critical for quality control and inspection
ZETECH ONE Manufacturing / Production Technology, Hardware & Services
Accurate inspection of dimensions, hole placement, and track layout plays a vital role in meeting product standards across consumer, telecom, aerospace, and medical devices.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved