Editor's Choice


Power designers are being challenged by spec changes

21 February 2018 Editor's Choice Power Electronics / Power Management

Today, engineers are asked to find creative solutions to deliver more power from less space and with higher efficiencies. This makes power system design an increasingly important part of developing technologically advanced electronic equipment. Research by Vicor found that these engineers are facing a myriad of challenges meeting cost and schedule targets.

The research found that power system developers around the globe perceive the biggest challenge to be changes in specifications for the power system during development. Although it may be surprising that this was the biggest problem, rather than technical challenges associated with meeting the system’s requirements, in fact changing specifications make it even harder to deliver a project on time and on budget.

The accompanying graph summarises the responses given when power designers were asked to identify their biggest challenges.

Main problems faced with power system development.
Main problems faced with power system development.

The challenge of changing specifications

Changes to specifications during development was the biggest issue that power system designers surveyed must overcome, with almost all (87%) struggling to deal with this challenge. Changes in specifications mean project delays and increased cost, due to the additional work required to modify the design to meet the new requirements.

It’s clear that these changes do have a major impact on projects, as most of those surveyed (65%) said that changes to product specification are a major contributor to delays in power system development. Although two thirds of power engineers already see the negative impact of changes on their projects, the problem is likely to get worse, as the majority (67%) believed that changes were becoming more common.

The impact of these changes can be dramatic. Almost all (80%) engineers surveyed are struggling to meet project time scales, with a similar number (79%) seeing the time given to each project reducing, and three quarters (72%) having to increase the rate of innovation due to shorter product life cycles. The changes to specifications can only increase the time pressure.

Delayed projects can have a large financial impact. To put it into perspective, take an example of an application that an OEM’s business projections show as starting to pay back within two years of the new system’s five-year product life. The project development in this example takes eight months. If there is even just a two-month delay, the return could reduce by as much as 20%. For a development of $1 million the loss of contribution could exceed $350 000, when one takes into account the reduced product life, as well as the increase in associated development costs. Additionally, these costs would typically be passed to the customer, reducing competitiveness. With half (48%) of respondents experiencing delays of two months or more, it’s clear that reducing, or eliminating, overruns would result in a significant improvement to profitability.

The impact can also be personal, eroding the morale and confidence of engineers who struggle to chase the moving specification goalposts. In Vicor’s experience, it’s likely that specification changes are a factor causing power developers to, on average, rate their power expertise as only 59/100, especially when three quarters of them say they have insufficient in-house expertise to manage the changes.

Causes of specification changes

As the survey findings highlight, changes to specifications are pretty much inevitable for most engineers (87% of our respondents said this was a problem). In Vicor’s experience, changes are most frequently driven by technical issues, particularly when the exact power budget is not known at the start of the project, loads are changed or restrictions are placed on thermal management due to space restrictions. External market or competitive forces can also cause a change to specification because: customer demands change; there are changes (or will be changes) to the legislative landscape; or a competitor launches a new product. All of these factors may cause an organisation to re-evaluate what the market now needs.

The impact of these changes will vary, depending on the length of product life cycle, market leadership and other internal market forces and levels of risk. But what’s important to note in the context of this survey is that engineers have little or no control over what is happening, they can only look to find ways to ameliorate their impact. Whatever the causes, Vicor meets with an increasing number of power developers who are having to deal with the specification changing after they have begun designing.

Dealing with the inevitable changes

If changes to specifications are inevitable, then there is little point in trying to avoid them. Power system designers should instead look at strategies that mitigate the impact of changes.

An inflexible approach to power design will make it harder to deal with changes in specifications. This is particularly the case when a custom power system is developed using discrete components or purchased from a vendor. In this case, any changes to the inputs or outputs require complex and time-consuming redesign work. At worst, discrete designs might need a different technology to meet the new requirements.

New, flexible approaches using modular power components (termed the Power Component Design Methodology by Vicor) may provide a way forward to enable power developers to accommodate changing specs without incurring significant delays. This approach uses small, easily interchangeable products that allow changes to be accommodated quickly and easily. Using power components also increases the certainty of performance: it’s much easier to accurately forecast the size and performance of power systems developed using this approach.

Engineers typically use online tools when implementing the Power Component Design Methodology. Vicor’s PowerBench offers a suite of free tools that not only allow systems to be designed and optimised quickly and easily, but also allow for revisions to meet new specifications quickly and easily.

Conclusion

Changes to specifications after development has started are the biggest challenge for power system designers, and the problem is getting worse. Conventional approaches to power system design, using discrete components, were developed when specifications were less fluid, and their lack of flexibility makes adapting to the inevitable changes difficult, time consuming and expensive.

Using modular power components offers several benefits, particularly the flexibility to make modifications to power systems quickly and easily, making it far more effective in today’s unpredictable design environment. Switching to this new approach may not stop power engineers’ bosses changing their minds, but will reduce the stress and cost of the new requirements.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

20 years of precision, progress and purpose – the Jemstech journey
Jemstech Editor's Choice Manufacturing / Production Technology, Hardware & Services
Twenty years ago, Jemstech began as a small, determined venture built on technical excellence and trust. Today, it stands among South Africa’s leading electronic manufacturing service providers.

Read more...
A new era in wire bond inspection
Techmet Editor's Choice Manufacturing / Production Technology, Hardware & Services
Viscom is developing a 3D wire bond inspection system that incorporates substantially improved sensors, a high image resolution, and fast image data processing.

Read more...
Energy harvesting using a battery-less IoT system
NuVision Electronics Editor's Choice Power Electronics / Power Management
Energy Harvesting plays an essential role in the foundation of ambient IoT, a new generation of ultra-low power connected devices that operate by drawing energy from their environment instead of relying on traditional batteries.

Read more...
Questing for the quantum AI advantage
Editor's Choice AI & ML
Two quantum experts disclose high hopes and realities for this emerging space.

Read more...
From the editor's desk: Progress meets reality
Technews Publishing Editor's Choice
In the first half of 2025, renewable energy, incorporating solar, wind, and to a lesser degree hydropower and bioenergy, has generated more electricity globally than coal did.

Read more...
From ER to effortless: The 15-year journey of Seven Labs Technology
Seven Labs Technology Editor's Choice Manufacturing / Production Technology, Hardware & Services
What started as a business likened to an ‘ER’ for electronic components has today grown into a trusted partner delivering kitting services and full turnkey solutions – taking the effort out of electronics and helping customers truly ‘Move to Effortless.’

Read more...
The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...
Interlynx-SA: Engineering SA’s digital backbone
Interlynx-SA Editor's Choice
At the heart of the industrial shift towards digitalisation lies the growing demand for telemetry, Industrial IoT (IIoT), advanced networking, and robust data solutions, and Interlynx-SA is meeting this demand.

Read more...
Converting high voltages without a transformer
Altron Arrow Editor's Choice Power Electronics / Power Management
With appropriate power converter ICs, such as the LTC7897 from Analog Devices, many applications can be suitably powered without having to use complex and cost-intensive transformers.

Read more...
Grinn Global: From design house to SoM innovator
Editor's Choice
From its beginnings as a small electronic design house, Grinn Global has moved into the spotlight as a system-on-module innovator working alongside technology giants like MediaTek.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved