mobile | classic
Dataweek Electronics & Communications Technology Magazine





Follow us on:
Follow us on Facebook Share via Twitter Share via LinkedIn


Search...

Electronics Buyers' Guide

Electronics Manufacturing & Production Handbook 2019


 

Sharing the power of digital twinning
27 February 2019, This Week's Editor's Pick, News

The movie Apollo 13 showed the world how NASA engineers used a ‘terrestrial twin’ of its stricken spacecraft to devise a way of bringing home the astronauts aboard.

Mark Patrick.
Mark Patrick.

Since then, the notion of pairing embodied in that miraculous rescue effort has developed and become more sophisticated. Its implementation is increasingly of a virtualised nature, and has ultimately evolved into the practice now referred to as digital twinning.

It was Dr Michael Grieves of the University of Michigan who first introduced the term ‘digital twin’ – with regard to product development work being undertaken at NASA – in his book Virtually Perfect: Driving Innovative & Lean Products through Product Lifecycle Management. Put simply, the digital twin is a dynamic virtual representation of a physical product.

The digital twin defined

Offering a starting point for creating the digital twin of a manufactured real-world product, rich 3D CAD data provides the basis for an accurate digital model and, indeed, is available long before any physical manifestation has been created. However, as recently as the early 2000s, mechanisms for directly capturing the information about individual units, at the point of manufacture, were relatively primitive. Only limited quantities of data were available, with which to characterise the digital model, often paper-based and collected manually.

More recently, increasing adoption of manufacturing execution systems (MES), collecting data from a wide variety of sensors, gauges, precision measuring instruments, inspection equipment, etc., has enabled a significant escalation in the quantity of the information captured from manufacturing processes. With automated collection, storage and organisation of the data, much more intricate models can now be constructed – allowing the digital representation to replicate the properties of the physical product with a far higher degree of accuracy.

And now democratised

The latest developments in information handling – namely the Internet of Things (IoT) and the advent of affordable high-performance cloud computing – are enabling digital twinning to be cost-effectively extended to cover the full product lifecycle, including day-to-day operation in the field.

Moreover, the practice has become more accessible to companies that are significantly smaller than the large OEMs and government-backed organisations that were among digital twinning’s early adopters. Greater affordability could drive the emergence of more imaginative use cases to improve product design, time to market, management and maintenance, as well as the end-user experience.

Improving product creation

With exact models available, product manufacturers can study the digital twin to gain insights that can be fed back to improve numerous aspects involved in creating the physical product – such as design features, selected components, the supply chain and the manufacturing processes to be used.

It also becomes possible to streamline new product development, saving time and cost by constructing and testing successive product generations in a virtual environment; only committing to physical manufacture when the latest iteration of the digital model entirely meets the required specification and is fully operationally optimised. As Michael Grieves himself has observed, moving pixels around is much easier than moving atoms.

True predictive maintenance

Digital twinning has been effectively applied to low-volume products that contain large numbers of parts, or that require extensive configuration or adjustment. Prime examples include aircraft engines, or large gas or steam generator turbines used in fossil-fuel power plants.

The complexity of systems such as these, prevents operators from calculating the optimum time to take any one unit offline for maintenance based on mean-time between failure (MTBF) analysis. Because unplanned downtime is expensive in the case of power generation, and safety-critical in the case of an aircraft engine, conventional maintenance is done routinely, usually at over-frequent intervals, aiming to replace vulnerable parts well before their end of life. Despite its expense, however, this approach is unable to predict when any given component will fail, and hence carries the ever-present risk of an unexpected and costly outage.

In contrast, digital twinning, leveraging large quantities of sensor data from the physical twin in the field to drive accurate predictive software applications, enables more cost-effective condition-based maintenance that takes into account a large number of parameters relating to real-world operating conditions.

These may dictate that equipment exposed to heavy use or short-term overloads or environmental hazards – such as an aircraft engine exposed to large quantities of volcanic ash while flying along a specific route on a particular day – requires earlier maintenance than the standard schedule may recommend, thereby heightening safety and boosting cost-effectiveness by ­reducing unplanned downtime.

On the other hand, if the data indicates lower than typical wear (due to activity levels being less than expected, for example), replacement intervals can be extended – thus reducing routine downtime without compromising quality of service or increasing the risk of failure.

Sharper remote asset management

Cost-effective monitoring of remote assets is another key strength of digital twinning. Growing environmental pressure to rely more on renewable energy sources means that large numbers of wind farms are currently being introduced. Utility-grade wind farms are often remotely located, in coastal areas or offshore to take advantage of favourable wind conditions. Weather in such locations can be extreme, and if storm damage is suspected, for example, the expense (not to mention the delay) incurred to send a service crew to check the status of turbines or other equipment can be high.

Maintaining a digital twin of each asset in the wind farm, enriched with real-time data from large numbers of sensors installed on turbines and other physical infrastructure in the field, enables experts to assess status – such as any structural weakness or damage to electrical equipment – quickly and in detail in order to determine the best course of action.

It may be possible to remedy any problems remotely. Or, if a site visit is deemed to be required, the appropriate team can be briefed in advance and equipped properly to carry out the task, thereby avoiding the cost of making multiple visits.

Under normal operating conditions, digital twinning still has value too. Applying real-time performance and configuration data to the digital twin enables each physical turbine to be adjusted for optimum efficiency and reliability.

Better customer experiences

With the democratising effects of the IoT and cloud computing, digital twinning can be applied on a more commercial basis. Vendors of equipment, such as manufacturing automation for example, can use it to deliver improved customer experiences that surpass the benefits of standard usage-based maintenance.

A dedicated digital twin of each machine in a given customer’s fleet can provide insights that the vendor can use not only internally to inform future product development, but also provides the opportunity to share individualised advice for users, such as how to modify operator behaviour to achieve improvements – like increasing yield, or minimising equipment wear or energy consumption.

The future of the digital twin

Historically, digital twins have been run on powerful industrial Internet platforms, such as GE’s Predix. More recently, a move by GE and Microsoft to bring Predix to Microsoft’s Azure Cloud, and the emergence of platforms such as SAP Predictive Engineering Insights software-as-a-service (SaaS), promise to greatly enhance accessibility and scalability when it comes to digital twin technology, with the further potential to harness artificial intelligence in the cloud to run numerous what-if scenarios.

With that roadmap, digital twinning has developed from (almost literally) a blue-sky concept pioneered in the space industry to an exciting tool that has broad commercial appeal. Industry analyst Gartner listed it among the top 10 strategic technology trends for 2018, and has forecast that billions of things will have digital twin equivalents by the start of the next decade.

A report by Research and Markets found that 75% of executives surveyed planned to incorporate digital twinning by 2020. IDC, for its part, predicts that on average companies will gain a 30% improvement in cycle times of critical processes by investing in digital twin technology.

As organisations strive for digital transformation, a digital twin can present a virtual model of a process, product or service, with numerous roles being covered – including assisting business planning, providing a testbed for digital experimentation, or a blueprint for future improvement.

With applications spanning the entire lifecycle, its reach will extend beyond manufacturing into a multitude of sectors, such as smart buildings, healthcare, environmental management, oil and gas exploration, and smart cities.

For more information contact TRX Electronics, authorised Mouser partner in South Africa, +27 12 997 0509, info@trxe.com, www.trxe.com


  Share on Facebook Share via Twitter Share via LinkedIn    

Further reading:

  • AI on a chip
    26 June 2019, News
    Researchers have created a machine learning library programmed in C that can run on microcontrollers, and on other platforms such as PCs, Raspberry PI and Android.
  • The ultimate wireless mesh for Industrial IoT in SA?
    29 May 2019, Altron Arrow, This Week's Editor's Pick, Telecoms, Datacoms, Wireless, IoT
    Analog Devices’ SmartMesh could help with predictive maintenance of the largely metal and concrete buildings which include industrial plants, data centres, commercial buildings, bridges and tunnels.
  • Passive RFID using UHF delivers long-range benefits in the IoT
    29 May 2019, Avnet South Africa, This Week's Editor's Pick, Telecoms, Datacoms, Wireless, IoT
    In order to support the use of UHF RFID as an IoT solution, a global alliance was formed in 2014 by Google, Intel, Impinj, Smartrac and AIM.
  • To ICASA or not to ICASA wireless modules?
    29 May 2019, Otto Wireless, This Week's Editor's Pick, Telecoms, Datacoms, Wireless, IoT
    When selecting a wireless module, purchasing an ICASA approved device or module from the approved supplier is critical.
  • Using a COTS-based SDR platform for streamlined 5G development
    29 May 2019, Rugged Interconnect Technologies, This Week's Editor's Pick, Telecoms, Datacoms, Wireless, IoT
    The latest SDR products offer solutions with integrated I/O, ARM processors, and large FPGAs that include intellectual property (IP) for accessing, routing and processing digital data.
  • From the editor’s desk: The unseen role of component distributors
    30 April 2019, Technews Publishing, News
    FAEs play an essential role in bridging the engineering world where things are designed and made, and the business world where big decisions are taken and money changes hands.
  • Is the supply chain broken?
    30 April 2019, Electrocomp, Diel Met Systems, ExecuKit, NuVision Electronics, RF Design, This Week's Editor's Pick, News
    The world’s insatiable demand for electronic goods has created a monster: a supply chain that spans the globe and relies on the entirety of our collective knowledge and experience in the pursuit of industry.
  • Choosing the right connector for harsh environments
    30 April 2019, TRX Electronics, This Week's Editor's Pick, Interconnection
    While connectors are sometimes left to last in a system design, they are essential components, and you need to get their selection right.
  • Taking control the easy way
    30 April 2019, Otto Wireless, This Week's Editor's Pick, Telecoms, Datacoms, Wireless, IoT
    As a wireless supplier, Otto Wireless Solutions is very often drawn into assisting clients when it comes to integrating our routers into final products. There are a few common questions we get asked, ...
  • Continued success for Zetech’s stencils division
    30 April 2019, Zetech, This Week's Editor's Pick, News, Manufacturing / Production Technology, Hardware & Services
    Best known for supplying SMT (surface mount technology) equipment and consumables for printed circuit board assembly for 33 years, Zetech is enjoying success with its more recently established stencils ...
  • Avnet hosts another successful technical seminar
    27 March 2019, Avnet South Africa, This Week's Editor's Pick, News
    The event gave delegates the opportunity to learn about some of the latest technologies available from Avnet and its suppliers, and to network with representatives of the company and with each other.
  • Load shedding’s toll on electronics manufacturing
    27 March 2019, Technews Publishing, Barracuda Holdings, Phahama Systems Development, TraX Interconnect, Production Logix, This Week's Editor's Pick, News
    Dataweek asked some of the local players how the week or so of load shedding in February this year affected them, as well as their forecasts for the future.

 
 
         
Contact:
Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronics Buyers’ Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Other
Terms & conditions of use, including privacy policy
PAIA Manual





 

         
    Classic | Mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.