mobile | classic
Dataweek Electronics & Communications Technology Magazine





Follow us on:
Follow us on Facebook Share via Twitter Share via LinkedIn


Search...

Electronics Buyers' Guide

Electronics Manufacturing & Production Handbook 2019


 

Harvesting kinetic energy to power smart objects
27 February 2019, Power Electronics / Power Management

Trends such as digital business transformation, the Internet of Things (IoT) and Industry 4.0 are driving demands for more and more diverse types of smart objects that are becoming ingrained, pervasive, and widely distributed throughout modern homes, businesses and infrastructures.

A large office building, factory or hotel could contain hundreds, or even thousands, of smart light switches, occupancy sensors, intruder or activity detectors, temperature sensors or alarm units. On the other hand, sensors embedded in movable assets such as shipping containers, machinery or vehicles could be located anywhere within a local geographical area, or globally, at any given time.

In situations such as these, replacing discharged batteries can be logistically challenging and expensive, especially if travelling is involved to reach devices in remote locations. As the world becomes increasingly smart and connected, batteries – although a convenient and portable source of energy for many applications – are not always the right choice in some of the emerging use cases. An alternative is needed that can help achieve longer operating lifetimes, relieve ownership costs, and ideally improve reliability and sustainability.

What are the options?

Fortunately we can now build sensing, signal conditioning, and communication circuits that consume considerably less power than earlier generations, thanks to advanced IC fabrication technologies and ultra-low-power chip design knowhow. Some products, such as smoke alarms or gas sensors, can be engineered to operate for their entire intended lifetime – up to several years in some cases – from a small primary battery that never needs to be changed.

Energy harvesting – such as recovering kinetic energy expended by a human ­operator pushing a button, and converting this into electrical energy – offers new ways to avoid battery replacement and potentially increase the reliability and longevity of a host of small electronic devices. If the peak system power exceeds the capability of the harvesting system, the recovered energy can be used to charge a rechargeable battery for powering the system.

Alternatively, harvested energy could be used to charge a supercapacitor to supply short-term, high-power demands. In some applications, the power demand and duty cycle can be so low that energy harvested from ambient sources is enough to supply the system’s needs, using just a small capacitor for stabilisation.

In addition to remotely located IoT devices, there are several other use cases where it makes sense to take advantage of kinetic energy to power RF circuitry for communicating data such as device status or event detection. Some examples include smart tools, such as wireless torque wrenches that automatically send quality and traceability data to manufacturing management software.

With energy harvesting, these can become maintenance-free, thereby increasing availability and uptime. Other examples include tool-storage systems capable of detecting when a tool has been lifted from its cradle, or one-touch remote controls for activating mechanisms such as automatic gates or garage doors.

Emergency equipment is another category of devices that can benefit by replacing battery power with kinetic energy harvesting. An emergency help button, by its nature, stands unused for most of its lifetime but must operate perfectly the instant it is needed. A battery for powering wireless circuitry to summon help may discharge over time unless regularly checked. Using energy harvesting in these, or similar devices, such as actuation detectors for fire extinguishers, eliminates this possibility.

Capturing kinetic energy

Among various phenomena that can be harnessed to convert kinetic to electrical energy, taking advantage of electromagnetic principles according to Faraday’s Induction Law can deliver a high yield for a relatively short range of motion. The Faraday law is:

Where:

V = Induced electromotive force (EMF).

N = Number of coil turns.

Change of magnetic flux per unit of time

Figure 1. Exploded view of ALPS’ SPGA kinetic energy harvesting module, which measures 17,5 x 27,9 x 23 mm.
Figure 1. Exploded view of ALPS’ SPGA kinetic energy harvesting module, which measures 17,5 x 27,9 x 23 mm.

Figure 1 shows how the SPGA electromagnetic module from ALPS combines a coil, core, magnetic components and slider mechanism to convert kinetic energy associated with movement of the slider into an EMF. The coil parameters and the properties of the magnetic materials are engineered to ensure a large induced EMF.

With a switching distance of 3,3 mm, depressing the button at a test speed of 20 mm/s has been shown to generate a positive pulse containing 170 μJ of energy. When the button is released, a similar negative pulse is produced. This is enough to enable a sub-GHz radio system to transmit a short data packet using a low-power protocol.

Figure 2. EMF waveform created by button press and release.
Figure 2. EMF waveform created by button press and release.

Figure 2 shows the waveform of the EMF generated by depressing and releasing the switch. To power a circuit using the energy harvested, the pulses must first be rectified as illustrated in the energy-harvesting reference circuit, shown in Figure 3. In this circuit, the rectified pulses charge the capacitor C2, which is connected to the low-power LDO (low drop-out regulator) IC3 to energise the power rail, VDD. Note also that the positive and negative pulses can be used to determine the direction of motion.

Figure 3. Energy harvesting reference circuit using ALPS’ SPGA module.
Figure 3. Energy harvesting reference circuit using ALPS’ SPGA module.

The circuit containing TR1 provides a press/release indicator with polarity discrimination, which allows the switch to be used as a battery-less sensor for detecting open/closed status of washroom doors, automatic gates, equipment lockers, display cabinets and similar mechanisms. The SPGA module is designed to be securely mounted on a printed circuit board, with two through-hole solder terminals and provision for a Taptite screw at each corner.

This type of cost-effective, high-yield energy harvesting mechanism, with built-in sensing capability, could help enable a large number of smart objects, whether connected to the IoT or otherwise, to operate for a lifetime without battery replacement, or even go completely battery-less, and benefit from reduced maintenance, lower ownership costs and greater sustainability.


Credit(s)
Supplied By: Avnet South Africa
Tel: +27 11 319 8600
Fax: +27 11 319 8650
Email: sales@avnet.co.za
www: www.avnet.co.za
  Share on Facebook Share via Twitter Share via LinkedIn    

Further reading:

  • Identifying and remedying lead-acid battery failures
    27 February 2019, Forbatt SA, Power Electronics / Power Management
    Proper management and regular maintenance can extend the life of a battery, but what are the possible causes of failure and what should be done if a battery fails?
  • Pros and cons of popular battery cell formats
    27 February 2019, Uniross Batteries, Power Electronics / Power Management
    Flat-cell designs are getting price competitive and battery experts predict a shift towards these cell formats, especially if the same performance criteria of the cylindrical cell can be met.
  • End-to-end LoRa security solution
    27 February 2019, Avnet South Africa, Telecoms, Datacoms, Wireless, IoT
    As the LoRa (Long Range) technology ecosystem accelerates, security remains an area for improvement in the market, due to vulnerabilities that leave the network and application server keys accessible ...
  • Accutronics and TDK-Lambda – a powerful partnership
    27 February 2019, Accutronics, Power Electronics / Power Management
    Accutronics is a name familiar to readers of Dataweek and the South African electronics industry at large, having offered a range of products to the industry since 1973. The company was founded with a ...
  • High-power DC laboratory PSU
    27 February 2019, MB Silicon Systems, Power Electronics / Power Management
    Bel Power Solutions and Protection’s new TSR10 is a robust, 10 kW, DC programmable laboratory power supply. It is a 3U, 19” rack mounted precision power supply which delivers clean and stable DC power, ...
  • Battery optimisation software for IoT devices
    27 February 2019, Concilium Technologies, Power Electronics / Power Management, Test & Measurement
    Keysight Technologies has introduced the X8712A IoT device battery life optimisation software solution, to ensure optimal battery life prior to device deployment to accelerate troubleshooting and device ...
  • High-voltage DC-DC converter
    27 February 2019, Accutronics, Power Electronics / Power Management
    TDK announced the introduction of the TDK-Lambda brand PH300A280-5 DC-DC converter, completing the PH-A280 series of 200 V to 425 V input, 50 W to 300 W power modules. The new model is designed for data ...
  • Compact 750 W power supplies
    27 February 2019, Vepac Electronics, Power Electronics / Power Management
    The GSP750 series of 750 W continuous / 900 W peak AC-DC power supply units from XP Power come in a low-profile, 1U high chassis with a 10,16 x 25,4 cm footprint. The peak power capability of 900 W for ...
  • ASIL-certified power MOSFET driver
    27 February 2019, Altron Arrow, Power Electronics / Power Management
    The AMT49105 is Allegro MicroSystems Europe’s newest ISO 26262 compliant N-channel power MOSFET driver, designed to simplify motor system designs and provide footprint reduction by integrating power analog ...
  • Class 2 DIN rail power supply
    27 February 2019, Accutronics, Power Electronics / Power Management
    The DRL100 24-1/C2 DIN rail power supply, made by TDK-Lambda, has a 24 V output and delivers 88 W of output power, and is approved to meet the requirements of US NEC (National Electric Code) Class 2 in ...
  • Half-brick 150 W converters
    27 February 2019, Vepac Electronics, Power Electronics / Power Management
    New from XP Power is the QSB150 series of 150 W, half brick DC-DC converters, aimed at a wide range of applications where an ultra-wide input range is required. Conforming to the industry standard half ...
  • Power modules for EVs
    27 February 2019, Future Electronics, Power Electronics / Power Management
    ON Semiconductor has launched new automotive intelligent power modules (IPMs) that offer high power density and overall performance in on-board charging (OBC) and other high-voltage DC-DC conversion applications ...

 
 
         
Contact:
Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronic Buyers Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Other
Terms & conditions of use, including privacy policy
PAIA Manual





 

         
    Classic | Mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.