Cypress Semiconductor’s HyperRAM 2.0 is a high-speed, low-pin-count, self-refresh Dynamic RAM (DRAM) for high-performance embedded systems requiring expansion memory. HyperRAM 2.0 offers HyperBus and Octal SPI interfaces that draw upon the legacy features of both parallel and serial interface memories, while enhancing system performance and ease of design, as well as reducing system cost.
The 12-pin, HyperBus and Octal SPI interfaces operate at double data rate (DDR) and can scale up to 400 MBps throughput, making HyperRAM 2.0 an ideal expansion memory for controllers with limited on-board RAM. When used as a scratch-pad memory, the fast read and write operations enable fast delivery of high-resolution graphics in the early part of the system boot process.
HyperRAM 2.0 is well suited for automotive instrument clusters, industrial HMI, industrial machine vision and display systems for consumer electronics.
MCU for noisy environments EBV Electrolink
DSP, Micros & Memory
The MCX?E24X is a high-performance microcontroller family from NXP, engineered for industrial, automotive-like, and energy-focused environments.
Read more...SmartRAID 4300 Series Altron Arrow
DSP, Micros & Memory
Microchip’s disaggregated architecture leverages host CPU and PCIe infrastructure to overcome traditional storage bottlenecks in scalable, secure NVMe RAID storage solutions.
Read more...High-performance SDR range RFiber Solutions
DSP, Micros & Memory
Epiq Solutions offers high-performance RF tuners and software-defined radios with various specifications for diverse applications in congested environments.
Read more...Multi-config connector series Future Electronics
Interconnection
Hirose Electric’s DF11 Series is a versatile 2,0 mm pitch, double-row board-to-wire connector designed to simplify a wide range of connection needs.
Read more...High performance SDR design considerations RFiber Solutions
Editor's Choice DSP, Micros & Memory
As the spectrum gets increasingly crowded, and adversaries more capable, the task of examining wide bands and making sense of it all, while not missing anything, gets harder.
Read more...Direct RF converters and FPGAs boost EW applications RFiber Solutions
DSP, Micros & Memory
The latest boost to electronic warfare designs comes from emerging FPGA architectures that combine advanced RF converters and high-performance processing engines in a single package.
Read more...1-Wire EEPROM with secure authenticator Altron Arrow
DSP, Micros & Memory
The DS28E54 secure authenticator combines FIPS 202-compliant secure hash algorithm (SHA-3) challenge and response authentication with secured electrically erasable programmable read-only memory.
Read more...New SiC power MOSFET Future Electronics
Power Electronics / Power Management
STMicroelectronics’ SCT012H90G3AG is a robust, automotive-grade SiC MOSFET, engineered for demanding power electronics, featuring a 900?V drain-source voltage and exceptionally low on-resistance of 12?mO at 60?A.
Read more...Satellite IoT through non-terrestrial networks Future Electronics
Editor's Choice Telecoms, Datacoms, Wireless, IoT
Non-terrestrial networks fill cellular coverage gaps in remote areas by extending terrestrial networks and are not subject to disruptions from natural disasters or sabotage.
Read more...1D Time-of-Flight sensor Future Electronics
Telecoms, Datacoms, Wireless, IoT
ams OSRAM has introduced its TMF8806, a 1D Time-of-Flight sensor that has been developed to remove the barriers of previous single-zone dToF devices.
While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.