Stellenbosch student presents paper on SA satellite at conference
4 October 2006
Telecoms, Datacoms, Wireless, IoT
A post-graduate student at the University of Stellenbosch represented South Africa at the Utah Small Satellite Conference that was held in the USA in August.
Kgabo Mathapo presented a paper on South Africa's second satellite, recently named 'Sumbandila' - a Venda word that means 'showing the way' or 'Pathfinder'. Mathapo's paper deals with the software defined radio automatic identification receiver (AIS), one of the several experimental payloads on the satellite.
Kgabo Mathapo presented a paper on Sumbandila, SA’s second satellite
The satellite is being built by SunSpace, a company that has its origins from the Sunsat satellite programme of the University. Sunsat was developed completely by a local team of engineers and launched in 1999 by NASA. This team forms the core of SunSpace today.
The Small Satellite Conference's theme this year was: The first 20 years, where we have been - where we are going. Sunspace considered it important for South Africa to be presenting a paper and supported Mathapo's participation.
Software defined radio (SDR) is a technology that is currently being researched at the University of Stellenbosch because of its potential to realise reconfigurable radio systems and networks that use the same hardware for different applications. The primary purpose of the SDR AIS experimental payload on Sumbandila is to demonstrate the monitoring of marine traffic along the SA coast. The secondary purpose is to carry out scientific experiments that will demonstrate the possibility of reconfiguring radio systems on a satellite through software updates and to serve as proof of concept of SDR for satellite communication systems.
Sumbandila (ZA002) is South Africa's second satellite that will be launched in a low earth orbit and has in addition to experimental payloads, an on-board multisensor imager will be used to take high resolution images of the earth. The satellite will be launched into a 500 km sun-synchronous orbit with a local time (at the equator) of 10 am and 10 pm.
The SDR project will use a space-qualified VHF/UHF transponder and on-board processing unit, developed for small satellites by SunSpace. The SDR architecture itself allows for the development of a library of components that are used to build a radio system.
Mathapo is studying in the Department of Signal Processing and Telecommunications Research Group and is working on the SDR project as his thesis for his Masters Degree in Electronic Engineering which he expects to complete this year. His paper goes into detail about GMSK modulation, demodulation and filtering techniques.
Further reading:
Wi-Fi 6 and Bluetooth LE co-processor
Altron Arrow
Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has released its ST67W611M1, a low-power Wi-Fi 6 and Bluetooth LE combo co-processor module.
Read more...
Improving accuracy of outdoor devices
iCorp Technologies
Telecoms, Datacoms, Wireless, IoT
In a real-world environment, accessing a direct satellite signal is not always possible, and it cannot be relied upon as the only solution to provide a device with accurate location at all times.
Read more...
New 3dB hybrid couplers
Electrocomp
Telecoms, Datacoms, Wireless, IoT
Designed to facilitate the continued evolution of high-frequency wireless systems in various market segments, the new DB0402 3dB 90° hybrid couplers provide repeatable high-frequency performance compatible with automated assembly.
Read more...
Next-level Software Defined Radio
IOT Electronics
Telecoms, Datacoms, Wireless, IoT
Great Scott Gadgets has announced the HackRF Pro, a powerful evolution of its popular Software Defined Radio (SDR) platform designed for engineers and enthusiasts.
Read more...
High-performance Zigbee and BLE module
iCorp Technologies
Telecoms, Datacoms, Wireless, IoT
The KCMA32S from Quectel boasts an ARM Cortex-M33 processor with a frequency of up to 80 MHz, and supports Zigbee 3.0, BLE 5.3 and BLE mesh.
Read more...
Championing local PCB manufacturing
Master Circuits
Telecoms, Datacoms, Wireless, IoT
Master Circuits, founded in 1994 by Peter Frankish in Durban, was born from the vision to meet the growing local demand for quick-turnaround printed circuit boards in South Africa.
Read more...
How IoT-driven smart data helps businesses stay ahead
Trinity IoT
Telecoms, Datacoms, Wireless, IoT
With around 19 billion IoT devices globally, embedded in everything from machinery to vehicles to consumer products, reliable data is plentiful.
Read more...
IoT-optimised LTE Cat 1 bis module
iCorp Technologies
Telecoms, Datacoms, Wireless, IoT
Quectel’s EG915K-EU is an LTE Cat 1 bis wireless communication module specially designed for M2M and IoT applications.
Read more...
Chip provides concurrent dual connectivity
EBV Electrolink
Telecoms, Datacoms, Wireless, IoT
The IW693 from NXP is a 2x2 dual-band, highly integrated device that provides concurrent dual Wi-Fi 6E + Wi-Fi 6 and Bluetooth connectivity, supporting four different modes.
Read more...
The 6 GHz band radio solution
Altron Arrow
Telecoms, Datacoms, Wireless, IoT
Analog Devices’ 16 nm transceiver family offers a highly integrated solution for this new frequency band, featuring low power consumption and high performance.
Read more...