News


Supercapacitor development improves energy retention

27 May 2009 News

Research into efficient charge storage mechanisms has always been an area of interest to the electronics industry, specifically for application segments such as consumer electronics.

The ability to charge a storage device and maintain the charge over a considerable amount of time have been the two most important performance markers of any charge storage technology.

Over the past decade, supercapacitors have been an area of interest to the research fraternity focusing on development of highly efficient battery technologies. Supercapacitors, or ultracapacitors, are electrochemical capacitors that have an extremely high energy density.

While supercapacitors have made a performance mark through their ability to acquire charge at very high speeds, industrial experts feel that there is still a lot of potential to improve their retention capacity. In the current scenario, even the best of the supercapacitors discharge at a very high rate, restricting their dominance in the industrial space.

In an attempt to improve the retention capability of supercapacitors, a team of researchers from the University of California in Los Angeles has developed a manufacturing process for supercapacitors that is said to improve their retention capacity. The process employs single walled carbon nanotubes (SWCNTs). Nanotubes are considered to have the potential to replace conventionally used silicon in applications such as CPUs, memories and radio circuits, due to their small size and very encouraging electrical characteristics.

Traditional supercapacitors are manufactured in layers with a viscous solution between plates, similar to a capacitor. When a voltage is applied across the two electrodes, the positive ions head very quickly to one electrode, and the negative ones to another, building up a charge. This process helps the supercapacitor to store energy at a faster rate, but doesn’t provide resistance from discharging.

In the new process suggested by the team from UCLA, carbon nanotubes were sprayed onto plastic films and two such films were sandwiched between an electrolyte of a water-soluble synthetic polymer, phosphoric acid and water. As a result, an ultrathin supercapacitor is formed, which is in the order of micrometres. This process prevents the supercapacitor from discharging too quickly.

The current implementation of this manufacturing process yields an equivalent of 70 kilowatts per kilogram of energy (9 watt hours per kilogram) – well below the power available in traditional lithium-ion batteries, due to energy losses seen when discharging the supercapacitor. An unusually high resistance exists when energy is moved into or out of the device.

The team is working on resolving these issues, and this effort is expected to result in super thin capacitors, which can be very large and rectangular, about 1 mm thick, making them suitable for use in extremely thin cellphones and mobile gadgets. As these supercapacitors power devices for an extended time period, they can also be charged via remote magnetic fields that do not require wires. As these carbon nanotube-based supercapacitors have properties such as fast charging, reliability, long-term cycling, and the ability to deliver significantly more power than batteries, they are expected to find application in power saving features in CPUs.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)21 680 3274, [email protected], www.frost.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Distribution agreement expansion for Mouser
News
Mouser has expanded its global distribution agreement with Eaton Corporation to include Eaton Electrical.

Read more...
How NTN modules integrate cellular and satellite to revolutionise IoT connectivity
News
Join this Masterclass webinar, held in partnership with Trimble, for an in-depth discussion on how to navigate the requirements of ASIL for GNSS devices.

Read more...
From the editor's desk: A challenging manufacturing landscape
Technews Publishing News
Electronic manufacturing in South Africa faces many challenges that limit its potential to compete effectively on the global market, with several obstacles that are impeding its development.

Read more...
TrendForce: Unveiling new opportunities in tech innovation for 2025
News
TrendForce has outlined 10 key trends shaping the technology landscape in 2025.

Read more...
Technical resource centre for smart cities
News
Mouser’s infrastructure and smart cities content hub features comprehensive articles, blogs, eBooks, and products from Mouser’s technical team and trusted manufacturing partners.

Read more...
UFS Flash named Best in Show
EBV Electrolink News
KIOXIA Europe GmbH was named as winner in the Memory & Storage category of the Embedded Computing Design (ECD) electronica Best in Show Awards at the recently held electronica 2024.

Read more...
Save the date for Securex South Africa 2025
News
Home to Africa’s largest collection of security solutions, Securex South Africa returns to Gallagher Convention Centre in Midrand from 3 to 5 June 2025.

Read more...
Trina Storage ranked in top 10
News
Amidst the global energy storage market, Trina Storage has once again earned recognition from authoritative institutions with its outstanding innovation capabilities and global layout.

Read more...
2025 outlook for DRAM is poor
News
According to TrendForce, weak demand outlook and rising inventory and supply forecast to pressure DRAM prices down for 2025.

Read more...
Price hike to challenge energy reforms
News
Eskom’s proposed 44% price hike could undermine renewable energy gains despite tech innovation.

Read more...