News


Researchers develop alternative to solar cells

11 May 2011 News

A dramatic and surprising magnetic effect of light discovered by University of Michigan researchers could lead to solar power without traditional semiconductor-based solar cells.

The researchers found a way to make an ‘optical battery,’ said Stephen Rand, a professor in the departments of Electrical Engineering and Computer Science, Physics and Applied Physics. In the process, they overturned a century-old tenet of physics.

“You could stare at the equations of motion all day and you will not see this possibility. We have all been taught that this does not happen,” said Rand, an author of a paper on the work published in the Journal of Applied Physics. “It is a very odd interaction. That is why it has been overlooked for more than 100 years.”

Light has electric and magnetic components. Until now, scientists thought the effects of the magnetic field were so weak that they could be ignored. What Rand and his colleagues found is that at the right intensity, when light is travelling through a material that does not conduct electricity, the light field can generate magnetic effects that are 100 million times stronger than previously expected. Under these circumstances, the magnetic effects develop strength equivalent to a strong electric effect.

“This could lead to a new kind of solar cell without semiconductors and without absorption to produce charge separation,” Rand said. “In solar cells, the light goes into a material, gets absorbed and creates heat. Here, we expect to have a very low heat load. Instead of the light being absorbed, energy is stored in the magnetic moment. Intense magnetisation can be induced by intense light and then it is ultimately capable of providing a capacitive power source.”

What makes this possible is a previously undetected brand of ‘optical rectification,’ says William Fisher, a doctoral student in applied physics. In traditional optical rectification, light’s electric field causes a charge separation, or a pulling apart of the positive and negative charges in a material. This sets up a voltage, similar to that in a battery. This electric effect had previously been detected only in crystalline materials that possessed a certain symmetry.

Rand and Fisher found that under the right circumstances and in other types of materials, the light’s magnetic field can also create optical rectification. “It turns out that the magnetic field starts curving the electrons into a C shape and they move forward a little each time,” Fisher said. “That C shape of charge motion generates both an electric dipole and a magnetic dipole. If we can set up many of these in a row in a long fibre, we can make a huge voltage and by extracting that voltage, we can use it as a power source.”

The light must be shone through a material that does not conduct electricity, such as glass. And it must be focused to an intensity of 10 million Watts per square centimetre. Sunlight is not this intense on its own, but new materials are being sought that would work at lower intensities, Fisher said. “In our most recent paper, we show that incoherent light like sunlight is theoretically almost as effective in producing charge separation as laser light is,” Fisher said.

This new technique could make solar power cheaper, the researchers say. They predict that with improved materials they could achieve 10% efficiency in converting solar power to useable energy. That is approaching today’s commercial-grade solar cells.

“To manufacture modern solar cells, you have to do extensive semiconductor processing,” Fisher said. “All we would need are lenses to focus the light and a fibre to guide it. Glass works for both. It is already made in bulk, and it does not require as much processing. Transparent ceramics might be even better.”

In future experiments, the researchers will work on harnessing this power with laser light, and then with sunlight.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor's desk: AI – a double-edged sword
Technews Publishing News
As with any powerful tool, AI presents challenges, some of which, if not carefully managed, threaten to undo the potential that it can offer.

Read more...
Global semiconductor sales increase
News
The Semiconductor Industry Association (SIA) has announced global semiconductor sales were $57,0 billion during the month of April 2025, an increase of 2,5% compared to the March 2025.

Read more...
Avnet Abacus announced new president
Avnet Abacus News
Avnet Abacus has announced that Mario Merino will succeed Rudy Van Parijs as president of Avnet Abacus, effective 1 July 2025.

Read more...
Avnet Abacus wins multiple prestigious awards
Avnet Abacus News
The awards from Molex recognise outstanding performance, collaboration, and significant growth in the challenging market conditions of 2024.

Read more...
Components distribution slowdown Q1 2025
News
European components distribution (DMASS) experienced a continued slowdown in the first quarter 2025.

Read more...
Semiconductor sales increase 17% YoY
News
The Semiconductor Industry Association (SIA) recently announced global semiconductor sales were $54,9 billion during the month of February 2025, an increase of 17,1% compared to the February 2024 total.

Read more...
Silicon Labs – Q1 results
News
Silicon Labs, a leading innovator in low-power wireless, recently reported financial results for the first quarter, which ended April 5, 2025.

Read more...
Strengthening industry through strategic partnerships at KITE 2025
Specialised Exhibitions News
The KwaZulu-Natal Industrial Technology Exhibition is not just an exhibition, it is a powerhouse of industry collaboration where visitors and exhibitors gain access to authoritative insights, technical expertise, and high-impact networking opportunities.

Read more...
Solar Youth Project calls on industry to step up
News
With the second cohort completed training and the first cohort returning for their final module, host companies are urgently needed to turn the training into a long-term opportunity.

Read more...
Conlog powers SA’s future with national smart meter rollout
News
Conlog recently secured the RT29-2024 contract from National Treasury, which is seen to be a major milestone towards modernising SA’s utility infrastructure.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved