mobile | classic
Dataweek Electronics & Communications Technology Magazine

Follow us on:
Follow us on Facebook Share via Twitter Share via LinkedIn


Electronics Buyers' Guide

Electronics Manufacturing & Production Handbook 2019


Trends in soldering technology - ready for the future
14 February 2001, Manufacturing / Production Technology, Hardware & Services

To maintain one's standing in today's electronic production industry requires continuous focus of attention on its market and to react to the newest developing trends. Topics governing the present market conditions are: 'Lead-free soldering', 'fluxless soldering' or '400 µ-Technology'. They confront the electronic production industry with new challenges.

Thus, in the years to come, new and increasing efforts will be required in reflow technology. Considering the component and printed circuit board spectrum, one realises quickly that the reflow soldering systems will have to cover an increasingly large process window. In particular, boards and components exhibit generally increased mass and size differences.

As if that would not be enough, the equipment manufacturer will have to meet the demands of the new lead-free solder pastes head-on. Their melting points are substantially higher than those of the conventionally used tin-lead pastes. Consequently, capacity reserves in the respective machine technology are now an absolute must.

New dimensions in reflow soldering technology

SEHO's new machine concept - the Reflow Series FDS 6500 - offers a 30% greater process chamber volume. It is the flow-dynamic flexibility of the pressure, taper and bridge channels that has substantially optimised its process (Figure 1).

Figure 1. Convection reflow soldering system FDS 6500 by SEHO
Figure 1. Convection reflow soldering system FDS 6500 by SEHO

Compared to standard machines, SEHO's FDS 6500 features tangential blowers. Thus it heats the assembly and its components homogeneously and gently. Of special advantage is the tangential blower's lateral position, which distributes the process gases uniformly across the total conveyor width. Because of this all heat-sensitive parts, eg motors or bearings, etc., are located outside the machine's hot zone. This arrangement achieves a substantial reduction of heating-stress compared to systems where the blowers are vertically positioned and thus adds subsequently to a longer service life.

Furthermore, SEHO's FDS 6500 features slotted nozzles - not only in the soldering zone but also in the entire preheating zone. The special nozzle design creates a highly turbulent condition on the assembly's surface. This deliberately created gas turbulance on the printed circuit board - ie board-level-turbulence - has the advantage that drag forces encountered by laminar flow are effectively neutralised.

It also prevents the dislocation of any component - even at a high circulation velocity of the gas stream. This turbulence also excludes any shadowing effect. All this creates a homogeneous temperature distribution over the whole process width and results in low DTs on the assembly.

Principle of the process gas flow of the FDS 6500

Any of SEHO's FDS 6500 with a heating zone length of at least 3,6 m features furthermore a double-peak, which permits a process especially safeguarding components (Figure 2).

Figure 2. Principle of the process gas flow of the FDS 6500
Figure 2. Principle of the process gas flow of the FDS 6500

This property is a particularly important aspect when processing lead-free solder pastes.

The second peak is set at an approximate 25K lower temperature relative to the first peak-zone.

Small components are heated to the maximum temperature already in the first peak-zone, in the second peak-zone they are kept steady at that temperature.

However, a high-mass component will be heated further in the second peak-zone - due to its lag-time.

This results in an extremely small delta DT.

Graph 1 shows a temperature profile - recorded with a SEHO FDS 6500 - with measuring points directly on the laminate, (FR4 blank, 1,6 mm), at an outer ball of a BGA, at a central ball of a BGA (ie always under the component), and at a PLCC and a QFP 132.

With this test a temperature difference of only 7K was recorded between hottest and coldest location!

Graph 1. Temperature profile recorded in an FDS 6500
Graph 1. Temperature profile recorded in an FDS 6500

Low overheads

SEHO's FDS 6500 features a unique nitrogen management system that consumes up to 30% less nitrogen - compared to standard machines in the market. Consequently, the savings are substantial.

Depending upon the density of population on the printed circuit board and the desired throughput, the average nitrogen consumption of SEHO's FDS 6500 is approx. 13 m3/h, at residual oxygen value of less than 50 ppm.

Considering a nitrogen purchase price of approx 25 Pf per m3 and operation during a 5 day-week with three shifts, annual savings of approximately DM 15,000 per machine may be realised.

Additionally, SEHO's FDS 6500 will realise massive savings in energy consumption. Depending upon the size and equipment of the individual machine it consumes only approximately 7-10 kW/h when being operated with nitrogen. Without nitrogen the energy consumption may drop around 4-7 kW/h. Obviously, the energy consumption is a function of the nitrogen consumption. This interdependency is caused by the nitrogen streaming to the outside thus carrying with it heat energy. The energy loss in the process has to be replaced by increased heating. The lower the nitrogen consumption, the lower the energy needed.

Precise measurements of the energy consumption of the FDS 6500 show that it consumes only insignificantly more during full production than under idle condition.

These extremely low consumption values are realised by the patented FDS 'Cassette-System' based on the tangential blowers and the nozzle system. Last but not least, the very efficient insulation of the whole process chamber is of great importance too. Furthermore, the so-called 'multifunctional' tunnels at the in-feed and exit of the machine ensure that only minor traces of oxygen may enter the process, thus assuring the nitrogen consumption to remain low.

Figure 3. Four-stage condensate management system
Figure 3. Four-stage condensate management system

Reduced maintenance

The four-stage condensate management system reduces, by its process gas cleaning, the contamination in the FDS 6500 to a minimum - and accordingly its maintenance overhead (Figure 3). Depending upon the throughput and process, maintenance cycles of more than 6 weeks may be realised. This compares favourably to standard machines in which the condensate residues in the process area must still be removed at least on a weekly basis!

From the first stage the condensing vapours are collected in a defined manner from the multifunctional cooling tunnels at the in-feed and exit of the machine.

In the second stage - the cleaning of the process gas in the heating zone - the contaminated gas is drawn off upstream of the peak-zone. It is passed by a condensate trap, cleaned and reentered in the pre-heating area and the peak-zone. The process gas is cooled only to such an extent which ensures the condensate to remain substantially liquid. This also ensures that at this point no unnecessary heat nor energy loss may occur.

A special feature of the system is that SEHO's FDS 6500 machines do not require any filters. Filters may gradually clog and thus cease to function effectively. SEHO'S FDS 6500, however, always ensures a uniform reflow process.

SEHO's FDS 6500 process gas cleaning principle uses physical laws of the flow properties of the condensate, removing it in a controlled manner from the process chamber and collecting it in provided polypropylene bottles (Figure 4). They may then be disposed with the condensate. The condensate trap is located in the lower part of the machine and easily accessed.

Figure 4. Process gas cleaning in the heating zone. Concentrated residues after approximately 90 000 soldered assemblies
Figure 4. Process gas cleaning in the heating zone. Concentrated residues after approximately 90 000 soldered assemblies

The third stage of the condensate management is integrated in the cooling zone. It is designed according to similar physical principles of the process gas cleaning as in the heating zone, ie this process uses the flow properties of the condensate too. Therefore, the cooling module does not need to be cleaned often.

Meeting the future

In addition to the capacity reserves for the actual processes, SEHO's FDS 6500 will meet also the future demands for its conveyor system. The system may integrate a single or dual conveyor, making possible up to four centre supports. Holding an equal footprint the FDS 6500 equipped with a dual conveyor may process approximately twice as many assemblies than with a single conveyor. Advanced precision controls ensure high operation reliability and the parallelism of the conveyor rails.

For further information contact Stephen Eglington, PEM Technologies, (011) 908 3030.

  Share on Facebook Share via Twitter Share via LinkedIn    

Further reading:

  • The only constant is change
    31 July 2019, Microtronix Manufacturing, Manufacturing / Production Technology, Hardware & Services
    Blatant tender rigging and wholesale corruption poses one of the biggest threats to us achieving arguably the single most important and critical requirement in the revival and rejuvenation of our country’s prospects through job creation.
  • All in space is not rocket science
    31 July 2019, Elmatica, Manufacturing / Production Technology, Hardware & Services
    Elmatica, a Norwegian printed circuit board (PCB) broker that established an office in South Africa last year, has assisted a newcomer to the space satellite scene to put its satellites into space.
  • Laminates for 5G active antenna arrays
    31 July 2019, RF Design, Manufacturing / Production Technology, Hardware & Services
    Rogers Corporation has introduced UL 94 V-0 antenna-grade laminates manufactured with standard profile electro-deposited copper foil to meet present and future performance requirements in active antenna ...
  • Benchtop soldering robot
    31 July 2019, Testerion, Manufacturing / Production Technology, Hardware & Services
    Weller’s new WTBR 1000 benchtop robot aims to synergise precision, reliability and productivity of soldering tasks. It is equipped with Weller‘s high-performance ‘Technology Line’ soldering tools, ensuring ...
  • New 3D detector for X-ray system
    31 July 2019, MyKay Tronics, Manufacturing / Production Technology, Hardware & Services
    The X Line 3D Series 400, an inline X-ray system from Goepel Electronic, has a new detector option for high-resolution 3D X-ray inspection of electronic assemblies. The MultiAngle Detector 3 combines ...
  • Conformal coatings for challenging operating environments
    31 July 2019, Vepac Electronics, Manufacturing / Production Technology, Hardware & Services
    Modern electronic assemblies are increasingly expected to survive hostile operating environments and work reliably in conditions of prolonged high temperatures in the presence of thermal shock and high ...
  • Configurable modular transfer for robot assembly cells
    31 July 2019, Truth Electronic Manufacturing, Manufacturing / Production Technology, Hardware & Services
    The LCM100 linear conveyor module, a new solution for robotic assembly by Yamaha’s Factory Automation (FA) Section, enables cleaner, quieter and more flexible workpiece transport. By simplifying production ...
  • Acrylic conformal coating
    26 June 2019, Vepac Electronics, Manufacturing / Production Technology, Hardware & Services
    Electrolube HPA is a high-performance acrylic conformal coating specifically designed to meet the demanding requirements of applications such as the defence and aerospace industries. HPA is fast-drying ...
  • Designing PCBs for Mil Spec
    29 May 2019, Cirtech Electronics, Manufacturing / Production Technology, Hardware & Services
    In the field of electronics, Mil Spec – or Military Specification – has a very clear and understood meaning. It denotes equipment designed and made to exacting standards, in accordance with precise rules ...
  • Continued success for Zetech’s stencils division
    30 April 2019, Zetech, This Week's Editor's Pick, News, Manufacturing / Production Technology, Hardware & Services
    Best known for supplying SMT (surface mount technology) equipment and consumables for printed circuit board assembly for 33 years, Zetech is enjoying success with its more recently established stencils ...
  • How to analyse blind via hole failures
    27 March 2019, This Week's Editor's Pick, Manufacturing / Production Technology, Hardware & Services
    It has become common practice to use blind, filled and stacked vias in many portable electronics products. Experience has shown that this method of interconnection is reliable, provided the fabrication process is well defined and controlled.
  • PCB microsectioning – paying attention to detail
    27 March 2019, Cirtech Electronics, This Week's Editor's Pick, Manufacturing / Production Technology, Hardware & Services
    In our high-tech world, it’s easy to overlook the importance of the humble printed circuit board (PCB). Buried in each electronic gadget or appliance there’s always at least one PCB and each one has ...

Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronics Buyers’ Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Terms & conditions of use, including privacy policy
PAIA Manual


    Classic | Mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.