Electronics Technology


GPS receiver has dead-reckoning algorithm

19 November 2003 Electronics Technology

u-blox' GPS receiver has an innovative dead-reckoning algorithm to provide accurate navigation regardless of whether satellites are visible or not.

The Sensor-Based GPS Receiver (SBR-LS), containing the company's leading-edge ANTARIS GPS positioning engine, sets a new benchmark for accurate positioning in areas where GPS reception is hindered. The dead-reckoning algorithm uses information from a turn rate sensor (gyroscope) and the vehicle's odometer for accurate navigation without GPS for extended time periods. Once the satellites are visible again, the GPS receiver (with fast re-acquisition time of less than 1 second) resumes to GPS navigation immediately. In areas with poor GPS reception, eg, city canyons, a weighted mix of GPS and sensor information is used for navigation. The SBR-LS carries out automatic calibration and temperature compensation.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Dual-band GNSS antenna
RF Design Telecoms, Datacoms, Wireless, IoT
The Taoglas Accura GVLB258.A, is a passive, dual-band GNSS L1/L5, high-performance antenna for high precision GNSS accuracy and fast positioning.

Read more...
Wi-Fi 7 front-end module
RF Design Telecoms, Datacoms, Wireless, IoT
The Qorvo QPF4609 is an integrated front end module designed for 802.11be systems that has integrated matching, which minimises layout area.

Read more...
GNSS chipset for wearables
RF Design Telecoms, Datacoms, Wireless, IoT
The UBX-M10150-CC from u-blox is a GNSS chip that supports GPS, QZSS/SBAS, Galileo, and BeiDou constellations, and is designed for integration into wearable applications.

Read more...
X-band radar
RF Design Editor's Choice Telecoms, Datacoms, Wireless, IoT
X-band radar systems, particularly those leveraging beamforming ICs (BFICs), advanced gallium nitride (GaN) and gallium arsenide (GaAs) components, are leading the way in providing the high-performance radar capabilities required for modern defence and surveillance.

Read more...
GNSS antenna redefining what’s possible
RF Design Telecoms, Datacoms, Wireless, IoT
u-blox has achieved what was once thought impossible with the launch of the DAN-F10N, the industry’s smallest and most reliable L1, L5 dual-band GNSS antenna module.

Read more...
u-blox expands NORA-B2 BLE modules
RF Design Telecoms, Datacoms, Wireless, IoT
The new nRF54L chipset-based wireless modules reduce current consumption and double processing capacity, catering to diverse mass market segments.

Read more...
New GNSS passive patch antenna
RF Design Telecoms, Datacoms, Wireless, IoT
The HP24510A from Taoglas is a stacked patch GNSS passive antenna that operates from 1215 to 1610 MHz covering the L1/L2 GNSS spectrum.

Read more...
6 – 18 GHz driver amplifier
RF Design Telecoms, Datacoms, Wireless, IoT
The QPA0022D from Qorvo is a high-performance driver amplifier covering a range of 6 to 18 GHz and fabricated on Qorvo’s production 0,15 µm pHEMT process.

Read more...
3,75 GHz RF inductor
RF Design Passive Components
The ceramic chip wire wound inductor from Coilcraft features a DC resistance of 1 O, a DC current of 175 mA, and a self-resonant frequency of 3,75 GHz.

Read more...
IoT in a Box
RF Design Telecoms, Datacoms, Wireless, IoT
RAKwireless and Datacake have collaborated on a solution called ‘Real IoT in a Box’ to address the complexities of deploying IoT solutions, particularly when it comes to LoRaWAN.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved