DSP, Micros & Memory


Improving motor efficiency in domestic appliances

19 May 2004 DSP, Micros & Memory

Today, electric motors, and particularly AC induction motors (ACIM), are widely used in domestic appliances, ranging from refrigerators and microwave ovens to washing machines and tumble dryers. A typical single-phase ACIM design is shown in Figure 1.

Figure 1: A conventional single-phase ACIM system
Figure 1: A conventional single-phase ACIM system

The modified split-phase motor shown has a capacitor in series with the start winding to provide a starting 'boost'. A centrifugal switch disconnects this capacitor and the start winding once the motor has reached around 75% of its target speed. Often, these motors will have multiple windings to accommodate the need for different speeds of operation.

In this type of circuit, the motor is connected directly to the mains input, so the voltage and frequency are constant. This means that in many cases the motor will be over-designed for peak performance. The result is an inefficient driving system that will often be generating more torque than is required by the load.

A problem that occurs in such systems is that the power factor (PF) is very low when the motor is operated at light loads. This degrades the quality of the power on the mains supply and can affect the performance of other equipment connected to the same line. Power distribution companies have started to set limits on the value of power factor at which their customers can draw power, and are imposing penalties on those who do not meet the requirements, so power factor is today a very important parameter for domestic appliances. The choice for the user is to use equipment that controls the power factor, maintain a full-load condition on equipment even when it is not needed, or to pay the penalty for the light-load condition.

Another problem that can be experienced is the possibility of a surge or sag of the supply to the appliance, caused by other equipment working on the same line. If the motor is not protected from these conditions, it will be subjected to higher stress than necessary, which can lead to its failure far sooner than would otherwise be the case.

The solution to these problems lies in intelligent motor control. Recent developments in microcontroller technology have produced devices that allow motors to be controlled more efficiently, while reducing noise and the costs at the component level. Microchip Technology recently introduced four 8-bit PICmicro MCUs known as the PIC18Fxx31 family. This family incorporates several new specialised motor control peripherals, including a power control pulse width modulation (PWM) module, a 200 kSaps analog-to-digital converter that can be synchronised with the PWM, and a motion feedback module. These features not only make intelligent-electronic motor control possible, but also simplify the system design process. Figure 2 shows a typical three-phase ACIM design using one of these new MCUs.

Figure 2: Three-phase ACIM variable-frequency drive using the PIC18Fxx31 MCU
Figure 2: Three-phase ACIM variable-frequency drive using the PIC18Fxx31 MCU

The variable-frequency drive (VFD), shown in Figure 2, is the most popular electronic control for ACIM. An additional benefit is that it allows users to drive a three-phase ACIM using a single-phase supply.

The VFD acts as a variable frequency generator, allowing the user to set the speed of the motor. Firstly, the rectifier and the filter convert the AC input to DC with very low ripple. Then the inverter, under the control of the PICmicro MCU, synthesises the DC into three-phase variable voltage, variable frequency AC. A number of additional features can be implemented, such as DC-bus voltage sensing, over-voltage and under-voltage trip, over-current protection, accurate speed/position control, temperature control, easy control setting, display, PC connectivity for realtime monitoring, and power factor correction.

A single VFD can control multiple motors, is adaptable to almost any operating condition, and eliminates the need to warm up the motor. For a given power rating, the control and the drive provided by the VFD depend solely on the algorithm written into it. This means that the same VFD can be used for a wide range of power ratings. The problems associated with conventional motor control are eliminated.

A PIC18Fxx31 device integrates all control functions needed for such a VFD, and can offer improved motor reliability, reduced noise and extended life. The most significant benefit is an efficiency improvement of up to 30% in many domestic appliances.

Additional resources for electronic motor control can be found on Microchip's web site at www.microchip.com/motor.

For more information contact TempeTech, 011 452 0534 or local Microchip Distributors, Arrow Altech Distribution, 011 923 9600, Avnet Kopp, 011 809 6100 or Memec SA, 011 897 8600.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Converter power modules for 48 V networks
Altron Arrow Power Electronics / Power Management
The economic and quality-of-life benefits of electrification is driving the adoption of HV to 48 V DC-DC conversion across many markets with 48 V power modules becoming more common.

Read more...
How a vision AI platform and the STM32N6 can turn around an 80% failure rate for AI projects
Altron Arrow AI & ML
he vision AI platform, PerCV.ai, could be the secret weapon that enables a company to deploy an AI application when so many others fail.

Read more...
Memory for asset tracking
Altron Arrow DSP, Micros & Memory
The Page EEPROM, ST’s latest memory, has been designed for efficient datalogging and fast firmware upload/download in battery-operated devices.

Read more...
Engineered for high-reliability applications
Future Electronics DSP, Micros & Memory
The MCX E series of Arm Cortex-M4F and Arm Cortex-M7 microcontrollers from NXP are engineered for demanding industrial and IoT environments.

Read more...
NXP’s development platform guide
DSP, Micros & Memory
Choosing between the FRDM i.MX 93, FRDM i.MX 91 and FRDM i.MX 91S development platforms can be intimidating, but once designers understand how each platform aligns with their application’s requirements, the decision becomes straightforward.

Read more...
Microchip and AVIVA Links collaboration
Altron Arrow News
Microchip and AVIVA Links have achieved groundbreaking ASA-ML interoperability, accelerating the shift to open standards for automotive connectivity.

Read more...
XJTAG launches two new Flash programmers
ASIC Design Services DSP, Micros & Memory
XJTAG has announced XJExpress and XJExpress-FPGA, a pair of Flash programmers perfect for development, debug and in-service applications.

Read more...
Expanded STM32WL3x line for IoT sensors
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WL31x and STM32WL30x are more tailored versions of the STM32WL33x for designers who wish to focus on specific features, while lowering their bill of materials.

Read more...
Processor offers competitive solution for advanced HMIs
Future Electronics DSP, Micros & Memory
The new RZ/A3M microprocessor from Renesas features 128 Mbytes of fast DDR3L DRAM memory for system cost reduction, and supports 1280 x 800 px video resolution at a rate of 30 frames/s.

Read more...
Ultra-low jitter clock buffers
Altron Arrow Telecoms, Datacoms, Wireless, IoT
New SKY53510/80/40 family of clock fanout buffers from Skyworks are purpose-built for data centres, wireless networks, and PCIe Gen 7 applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved