Telecoms, Datacoms, Wireless, IoT


Choosing a highly integrated, globally compliant embedded modem

18 May 2005 Telecoms, Datacoms, Wireless, IoT

An embedded modem offers quick network access for applications with limited data transmission requirements. Today, more and more applications such as set-top boxes, electronic point-of-sale terminals (EPOS), digital video recorders, digital televisions and remote monitoring systems distribute information by taking advantage of widely available modem connectivity. The list of applications continues to grow.

In today's changing technology environment, there are several factors to take into consideration when choosing an embedded modem including integration, global compliance and the speed/feature requirements of the end application. Properly implemented integration is a compelling factor for design engineers because fewer external components significantly reduce the bill of materials (BOM) enabling an easier-to-use, lower cost solution. Knowledge of the end product function is an important factor in deciding the modem speed and country settings. A single design for all speeds and all countries offers greater flexibility and faster time-to-market by simplifying the design, manufacture and distribution process. Additionally, different applications such as EPOS terminals and set-top boxes, require different speeds ranging from 2400 bps to 56 Kbps. Flexibility offered by an embedded modem is also an important factor to consider. An application that needs an embedded modem that operates at 2400 bps today may need higher rates in the future. Leveraging an embedded modem family that can scale from 2400 bps to 56 Kbps using the same footprint eliminates the need to re-design the modem when an upgrade is required.

Diverse applications require specific features

The first step in selecting an embedded modem is to make sure the features match the needs of the application. In applications such as EPOS terminals and credit card readers, an embedded modem that operates at a lower speed can be used because it does not require a significant amount of data transmission at one time. On the other hand, personal video recorders (PVR) such as TiVo download an electronic programming guide and other large data files, which creates the need for a modem that operates at higher speeds.

To take the PVR example further, an embedded modem should offer caller ID decoding in order for incoming caller information to be displayed on the TV screen. Modems should also unobtrusively determine if the phone line is available or in use so that telephone calls will not be interrupted when the PVR attempts to download information. Additionally, during a data connection, the embedded modem should alert the host if a phone is picked up on the shared line.

High integration simplifies design, lowers cost

Once features required for the application are determined, examine the integration options. By integrating several components that make up an effective embedded modem into a compact chipset, it significantly reduces the BOM. Modems have four basic components: a controller, a DSP data pump, memory and a direct access arrangement (DAA). Some solutions integrate a modem controller and a DSP data pump but use external memory and a discrete DAA requiring numerous components.

A better alternative implements a silicon DAA which eliminates the need for a codec, an isolation transformer, relay, opto-isolator and a 2-to-4-wire hybrid. The Silicon Laboratories' ISOmodem embedded modem products are a good example. These products provide a standard UART interface, AT command support and integrated ROM and RAM, allowing the embedded modem to greatly simplify hardware and software development by easing design layout, procurement and compliance testing. Maximising integration increases the functionality on a given PCB, reduces the footprint and ultimately lowers the BOM.

Global design

Another important factor in designing in an embedded modem is global compliance. Different countries specify different standards and speeds for various applications. By sharing the same globally compliant line-side device, a single embedded modem design can be used in all countries and for all modem speeds ranging from 2400 bps to 56 Kbps. A single, globally compliant design reduces the time-to-market risks associated with PTT country approvals and design risks associated with emissions, immunity, safety and surge performance.

Modem connectivity needs to be cost effective, reliable and easy to implement. A fully featured, highly integrated solution can dramatically reduce design time and create a flexible solution that will evolve with the application.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

SMT-mountable card connectors
Telecoms, Datacoms, Wireless, IoT
Würth Elektronik introduces four new SMT-mountable Nano SIM and microSD card connectors and expands its range with solutions for the smallest packages.

Read more...
Module for smart city and smart utility devices
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has launched the Quectel KCM0A5S, a high-performance Wi-SUN module designed for smart applications such as street lighting, precision agriculture, industrial IoT, smart meters and smart cities.

Read more...
Ultra-low-power wireless module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WBA5MMG from STMicroelectronics is an ultra-low-power, small form factor, certified 2,4 GHz wireless module that supports Bluetooth LE, Zigbee 3.0, OpenThread, and IEEE 802.15.4 proprietary protocols.

Read more...
Enhance SiC device efficiency using merged-pin Schottky diodes
NuVision Electronics Editor's Choice Power Electronics / Power Management
Silicon carbide (SiC) has advantages over silicon (Si) that make it particularly suitable for Schottky diodes in applications such as fast battery chargers, photovoltaic (PV) battery converters, and traction inverters.

Read more...
Quectel partners with GEODNET
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has partnered with GEODNET to deliver Quectel’s Real-Time Kinematic (RTK) correction services, enabling high-precision positioning for IoT applications.

Read more...
Bringing Bluetooth Channel Sounding to automotive and beyond with KW47
Altron Arrow Telecoms, Datacoms, Wireless, IoT
NXP’s new Channel Sounding-certified KW47 and MCX W72 wireless MCUs are set to help automakers with distance measurement, bringing an additional ranging solution for car access and autonomous systems, and will be utilised across a broader spectrum of applications.

Read more...
Redefining entry-level MCUs
NuVision Electronics DSP, Micros & Memory
The company positions the GD32C231 series as a ‘high-performance entry-level’ solution designed to offer more competitive options for multiple applications.

Read more...
Dual-band GNSS antenna
RF Design Telecoms, Datacoms, Wireless, IoT
The Taoglas Accura GVLB258.A, is a passive, dual-band GNSS L1/L5, high-performance antenna for high precision GNSS accuracy and fast positioning.

Read more...
What is Wi-Fi HaLow and why choose it for IoT?
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
Wi-Fi HaLow introduces a low power connectivity option that, in contrast to other Wi-Fi options, offers greater range of approximately 1 km, which opens up a raft of IoT use cases.

Read more...
Wi-Fi 6 and Bluetooth LE coprocessor module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The ST67W611M1 from STMicroelectronics boasts an all-in-one design which, together with its capabilities, contribute to making it an attractive choice for IoT edge devices requiring a single-chip solution.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved