Telecoms, Datacoms, Wireless, IoT


Choosing a highly integrated, globally compliant embedded modem

18 May 2005 Telecoms, Datacoms, Wireless, IoT

An embedded modem offers quick network access for applications with limited data transmission requirements. Today, more and more applications such as set-top boxes, electronic point-of-sale terminals (EPOS), digital video recorders, digital televisions and remote monitoring systems distribute information by taking advantage of widely available modem connectivity. The list of applications continues to grow.

In today's changing technology environment, there are several factors to take into consideration when choosing an embedded modem including integration, global compliance and the speed/feature requirements of the end application. Properly implemented integration is a compelling factor for design engineers because fewer external components significantly reduce the bill of materials (BOM) enabling an easier-to-use, lower cost solution. Knowledge of the end product function is an important factor in deciding the modem speed and country settings. A single design for all speeds and all countries offers greater flexibility and faster time-to-market by simplifying the design, manufacture and distribution process. Additionally, different applications such as EPOS terminals and set-top boxes, require different speeds ranging from 2400 bps to 56 Kbps. Flexibility offered by an embedded modem is also an important factor to consider. An application that needs an embedded modem that operates at 2400 bps today may need higher rates in the future. Leveraging an embedded modem family that can scale from 2400 bps to 56 Kbps using the same footprint eliminates the need to re-design the modem when an upgrade is required.

Diverse applications require specific features

The first step in selecting an embedded modem is to make sure the features match the needs of the application. In applications such as EPOS terminals and credit card readers, an embedded modem that operates at a lower speed can be used because it does not require a significant amount of data transmission at one time. On the other hand, personal video recorders (PVR) such as TiVo download an electronic programming guide and other large data files, which creates the need for a modem that operates at higher speeds.

To take the PVR example further, an embedded modem should offer caller ID decoding in order for incoming caller information to be displayed on the TV screen. Modems should also unobtrusively determine if the phone line is available or in use so that telephone calls will not be interrupted when the PVR attempts to download information. Additionally, during a data connection, the embedded modem should alert the host if a phone is picked up on the shared line.

High integration simplifies design, lowers cost

Once features required for the application are determined, examine the integration options. By integrating several components that make up an effective embedded modem into a compact chipset, it significantly reduces the BOM. Modems have four basic components: a controller, a DSP data pump, memory and a direct access arrangement (DAA). Some solutions integrate a modem controller and a DSP data pump but use external memory and a discrete DAA requiring numerous components.

A better alternative implements a silicon DAA which eliminates the need for a codec, an isolation transformer, relay, opto-isolator and a 2-to-4-wire hybrid. The Silicon Laboratories' ISOmodem embedded modem products are a good example. These products provide a standard UART interface, AT command support and integrated ROM and RAM, allowing the embedded modem to greatly simplify hardware and software development by easing design layout, procurement and compliance testing. Maximising integration increases the functionality on a given PCB, reduces the footprint and ultimately lowers the BOM.

Global design

Another important factor in designing in an embedded modem is global compliance. Different countries specify different standards and speeds for various applications. By sharing the same globally compliant line-side device, a single embedded modem design can be used in all countries and for all modem speeds ranging from 2400 bps to 56 Kbps. A single, globally compliant design reduces the time-to-market risks associated with PTT country approvals and design risks associated with emissions, immunity, safety and surge performance.

Modem connectivity needs to be cost effective, reliable and easy to implement. A fully featured, highly integrated solution can dramatically reduce design time and create a flexible solution that will evolve with the application.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power amps for portable radio comms systems
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
CML Micro expands its SµRF product portfolio with a pair of high efficiency single- and two-stage power amplifiers that offer outstanding performance for a wide range of dual-cell lithium battery-powered wireless devices.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
Choosing a GNSS receiver
RF Design Telecoms, Datacoms, Wireless, IoT
Applications requiring sub-ten-meter positioning accuracy today can choose between single-band or dual-band technology. While this decision might seem as simple as flipping a coin, it is far from that.

Read more...
Tri-Teq’s latest range of filters
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Tri-Teq recently presented its latest filter products, which included passive and co-site mitigation filters (lumped element and suspended substrate technologies) and tunable filters (bandpass and harmonic switched filters).

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
Links Field Networks: The perfect fit for telematics in Africa
Links Field Networks Telecoms, Datacoms, Wireless, IoT
Operating at the intersection of global SIM innovation and local market intelligence, Links Field Networks has emerged as a premier provider of telematics-oriented connectivity across Africa and beyond.

Read more...
RF direct conversion receiver
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The CMX994 series from CML Micro is a family of direct conversion receiver ICs with the ability to dynamically select power against performance modes.

Read more...
Bridging the future with RAKWireless WisNode devices
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The WisNode Bridge series by RAKWireless is designed to convert traditional wired industrial protocols like RS485 and Modbus into LoRa-compatible signals.

Read more...
Mission-critical RF transceiver
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Iris SQN9506 from Sequans Communications is a wide-band RF transceiver that operates from 220 MHz to 7,125 GHz.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved