Telecoms, Datacoms, Wireless, IoT


Are read/write UHF transponders able to work reliably?

7 September 2005 Telecoms, Datacoms, Wireless, IoT

RFID operates partly in the world of reality and partly in the realm of fiction. When a group sits down to write the specification of a new device, hype makes that part 'virtual reality' without it ever having been built or tested in a practical situation. This is partly due to the very long development times needed to develop a new integrated circuit that operates reliably.

Such a situation is happening with the concept of a read/write transponder, to operate at UHF frequencies.

The true test for a new technology is: 'will the device work reliably in a real world situation?' Even the current 'read-only' UHF technology that is presently being tested in supermarkets is finding a problem with its system reliability, with reading errors causing problems in the automated system. These errors are typically caused by transponders not receiving enough power to operate when passing a reader, often caused due to the transponder being screened by other goods on the pallet, or being incorrectly attached to an item in such a manner that the item sucks up the available RF energy.

Requirements

To store information on a passive tag, certain memory structures are needed that can be programmed and which will retain their data even when the energy is removed. This is achieved by storing charge in the semiconductor layers in the chip where the leakage is very low. To achieve this storage, a higher operating voltage and energising power is needed, compared to those needed for just reading or operating the device.

For example an EEPROM (electrically-erasable memory) can be built using 2,7 V architecture, while a 'read-only' device can be made that only needs voltages as low as 1,1 V. In addition, the power needed by the transponder is higher for the 'writing' process, compared to the minimal power needed for the 'reading' cycle. There are pumped-storage devices that can increase the voltage available for programming purposes, but they require higher powers for operating and starting. The transponder also, cannot have any significant energy storage on the chip to cater for these higher energy requirements, due to the goal of what is achievable in producing capacitance, while desiring a small chip area.

Power/range

The reader radiates power from its transmit antenna. That energy is spread over the surface area of a sphere, whose radius is the time of travel, times the speed of light. This results in the energy density available to the transponder decreasing as the inverse square of the distance - that is, every time the operating distance doubles, the energy available at the transponder is quartered.

This property means that transponders operating at lower powers will have greater operating range than those needing higher powers. This further means that due to a UHF transponder needing a higher power for the storing of energy than that needed for reading, the zone in which it can update information (write) is going to be smaller than that at which it can be read - possibly as little as only 30% of the read zone.

Further, as it is not possible to determine in which zone the transponder lies due to the high speed of light and the small operating bandwidths, the reader is not able to determine accurately if the information it is wanting to update, will be successfully implemented.

In Dataweek 15 June 2005 (How well does RFID energy pass through objects?), we discussed the issue of reflection of energy off interfaces between objects of different dielectric constant. The reflected energy from these interfaces interacts also with the energising field from the reader, causing RF 'holes' even in the read/write zone, meaning that even in the read/write zone, there will be areas where the updating of information on transponders will be unreliable.

The test for the success of this technology is going to be real world testing. This can only be achieved when large numbers of the transponders are in use, and when system reliability can be accurately measured.

Where to?

Possibly the next EPC phase would be to go to a protocol that implements a number system based on the current barcode systems so that barcoding and RFID devices can be used together. This will allow the smaller retailers to also benefit from the new wave of automation! And importantly, it would be a good time to switch to 'tag-talks-first' type protocols, so as to minimise the RF interference levels and make the new systems compatible with the limited RF spectrum available in most countries.

For more information contact Mike Marsh, Trolley Scan, +27 (0)11 648 2087, [email protected]



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Full sensor to cloud solution
CST Electronics Telecoms, Datacoms, Wireless, IoT
NeoCortec has demonstrated the seamless and rapid development of full sensor-to-cloud solutions using NeoMesh Click boards from MikroE and the IoTConnect cloud solution from Avnet.

Read more...
Long-range Wi-Fi HaLow module
TRX Electronics Telecoms, Datacoms, Wireless, IoT
One of Mouser’s newest products is the Morse Micro MM6108-MF08651-US Wi-Fi HaLow Module, which adheres to the IEEE 802.11ah standard.

Read more...
Quectel launches 3GPP NTN comms module
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced the Quectel BG95-S5 3GPP non-terrestrial network (NTN) satellite communication module.

Read more...
SIMCom’s A7673x series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently released the A7673X series, a Cat.1 bis module based on the ASR1606 chipset, that supports wireless communication modes of LTE-FDD, with a maximum downlink rate of 10 Mbps and a maximum uplink rate of 5 Mbps.

Read more...
Accelerating the commercialisation of the 5G IoT markets
Altron Arrow Editor's Choice Telecoms, Datacoms, Wireless, IoT
Fibocom unveils Non-Terrestrial Networks (NTN) module MA510-GL, enabling satellite and cellular connectivity to IoT applications.

Read more...
Long-range connectivity module
Avnet Silica Telecoms, Datacoms, Wireless, IoT
Digi XBee XR 868 RF Modules support the deployment of long-range connectivity applications, and support point-to-point and mesh networking protocols.

Read more...
4G LTE-M/NB-IoT connectivity reference design
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Developed around the industry-leading Nordic nRF9160 module, the platform comes complete with a newly-developed LTE antenna, ATRIA, which is pre-certified to operate over the full LTE-M and NB-IoT bands.

Read more...
Antennas to meet all connectivity requirements
Electrocomp Telecoms, Datacoms, Wireless, IoT
Kyocera AVX RF antennas meet today’s connectivity demands in the LTE, Wi-Fi, Bluetooth, GNSS, and ISM wireless bands, available in surface mount, patch or external configurations.

Read more...
Introducing SIMCom’s new A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently released the A7673X series, a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
18 W monolithic microwave amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The CHA8612-QDB is a two stage, high-power amplifier operating between 7,9 and 11 GHz. The monolithic microwave amplifier can typically provide 18 W of saturated output power and 40% of power-added efficiency.

Read more...