Telecoms, Datacoms, Wireless, IoT


EXAR UARTS in GPS applications

16 May 2007 Telecoms, Datacoms, Wireless, IoT

GPS has traditionally been used in military applications such as marine navigation, aircraft navigation, and weapon’s guidance. However, GPS applications have recently expanded to industrial and consumer applications such as vehicle navigation systems, fleet management, and personal navigation.

This article describes where an Exar UART can be used in a global positioning system (GPS) application.

In industrial and consumer applications, the Exar UART can be used in the GPS receiver and in the GPS application. GPS application examples are shown in Figure 1.

Figure 1. GPS application examples
Figure 1. GPS application examples

A GPS receiver typically includes the following: an RF block for receiving the GPS data and converting it to digital data; microprocessor for processing the data; ROM to store the firmware for processing the data; RAM used by the microprocessor for data processing; UART to send data to the GPS application.

Figure 2 shows a block diagram of a GPS receiver and Figure 3 shows a block diagram of an automobile GPS navigation system.

Figure 2. GPS receiver block diagram
Figure 2. GPS receiver block diagram

Figure 3. Automobile GPS navigation system
Figure 3. Automobile GPS navigation system

The UART that has been used in the GPS receiver or in the GPS application, has typically been an industry standard 16550 UART or a UART that is available on the microprocessor. In place of the standard UART, an enhanced Exar UART can be used to replace the UART on both the GPS receiver and GPS application to increase performance and data throughput. If the microprocessor has a local 8-bit (Intel or Motorola) bus interface, then any of the XR16Vxxxx or XR16Mxxxx high performance UARTs can be used (Figure 4).

Figure 4. 8-bit bus interface
Figure 4. 8-bit bus interface

If the microprocessor has either an SPI or I²C bus interface, then any of the XR20Mxxxx or XR20Vxxxx I²C/SPI UARTs can be used (Figure 5). In the case that a microprocessor has a PCI bridge, then any of the XR17xxx PCI UARTs can be used (Figure 6).

Figure 5. I2C/SPI interface
Figure 5. I2C/SPI interface

Figure 6. PCI bus interface
Figure 6. PCI bus interface

The advantages of using an enhanced Exar UART in a GPS application are the following:

* Higher data throughput:

The data throughput can be significantly increased as the maximum baud rate is 16 Mbps. The maximum baud rate for a UART on existing GPS receivers range from 4800 bps up to 115,2 Kbps. For example, assuming that each byte is 10 bits long (one start bit, eight data bits, no parity, one stop bit), it would take approximately 10 milliseconds to send 128 bytes of data at 115,2 Kbps. With Exar's UART operating at 16 Mbps, it would only take 80 μs to send the same data.

* Larger FIFOs:

To support the higher data rates, Exar UARTs have larger FIFOs to reduce the servicing time between interrupts to allow the microprocessor more time to perform other tasks.

* Automatic flow control:

To prevent data overrun errors, Exar UARTs have automatic hardware (RTS/CTS) flow control and software (Xon/Xoff) flow control features that can be enabled. Current GPS applications do not use any flow control features resulting in slower baud rates.

* Fractional baud rate generator:

The industry standard 16550 UART requires a standard clock or crystal to generate standard baud rates. With the fractional baud rate generator feature of enhanced Exar UARTs, that is no longer a requirement. The enhanced Exar UART can generate any standard or custom baud rate with any clock frequency. Therefore, any existing clock source on the board (such as the clock used by the microprocessor) can be used by the Exar UART resulting in reduced board costs.

* Wide operating voltage range:

The XR16Mxxxx and XR20Mxxxx UARTs can operate from 1,62 V to 3,63 V, the XR16Vxxxx and XR20Vxxxx UARTs can operate from 2,25 V to 3,63 V and the XR17xxxx (PCI) UARTs can operate 3,3 V.

* Lower power consumption:

In addition to lower operating voltages, Exar's enhanced UARTs have a sleep and/or PowerSave mode to further conserve power when the UART is not being used. In the sleep/PowerSave mode, the power consumption is less than 30 μA at 3,3 V and less than 15 μA at 1,8 V. This feature would be ideal in extending the battery life for portable/handheld applications.

* Small package footprint:

Most Exar UARTs are available in a leadless QFN package (as small as 4 X 4 X 0,9 mm) to optimise the use of board space in space-constrained applications.

Conclusion

Any existing or new GPS application can be improved by using an enhanced Exar UART. Exar's UARTs have enhanced features that can increase data throughput while preventing data loss and data errors. Exar's enhanced UARTs can easily be interfaced with any microcontroller that has an 8-bit (Intel or Motorola) bus interface, an I²C/SPI interface or a PCI interface.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power amps for portable radio comms systems
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
CML Micro expands its SµRF product portfolio with a pair of high efficiency single- and two-stage power amplifiers that offer outstanding performance for a wide range of dual-cell lithium battery-powered wireless devices.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
Choosing a GNSS receiver
RF Design Telecoms, Datacoms, Wireless, IoT
Applications requiring sub-ten-meter positioning accuracy today can choose between single-band or dual-band technology. While this decision might seem as simple as flipping a coin, it is far from that.

Read more...
Tri-Teq’s latest range of filters
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Tri-Teq recently presented its latest filter products, which included passive and co-site mitigation filters (lumped element and suspended substrate technologies) and tunable filters (bandpass and harmonic switched filters).

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
Links Field Networks: The perfect fit for telematics in Africa
Links Field Networks Telecoms, Datacoms, Wireless, IoT
Operating at the intersection of global SIM innovation and local market intelligence, Links Field Networks has emerged as a premier provider of telematics-oriented connectivity across Africa and beyond.

Read more...
RF direct conversion receiver
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The CMX994 series from CML Micro is a family of direct conversion receiver ICs with the ability to dynamically select power against performance modes.

Read more...
Bridging the future with RAKWireless WisNode devices
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The WisNode Bridge series by RAKWireless is designed to convert traditional wired industrial protocols like RS485 and Modbus into LoRa-compatible signals.

Read more...
Mission-critical RF transceiver
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Iris SQN9506 from Sequans Communications is a wide-band RF transceiver that operates from 220 MHz to 7,125 GHz.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved