Passive Components


Ferrous alloy E-cores have benefits

19 March 2008 Passive Components

Kool Mμ powder cores from Magnetics are made of a ferrous alloy powder (Al, Si, Fe composition), which has low losses at elevated temperatures. They have a distributed air gap that makes them ideally suited for switching regulator inductors, flyback transformers and power factor correction (PFC) inductors.

The 10 500 gauss saturation level provides a higher energy storage capability than can be obtained with gapped ferrite E-cores, resulting in a smaller core size.

Kool Mμ E-cores are competitively priced against gapped ferrite E-cores and their distributed air gap eliminates gap loss problems associated with ferrites. These cores also have significantly lower losses and substantially better thermal properties than powdered iron E-cores.

Materials and DC bias

Kool Mμ E-cores are available in permeabilities of 26 μ, 40 μ, 60 μ and 90 μ. The most critical parameter of a switching regulator inductor material is its ability to provide inductance, or permeability, under DC bias. Figure 1 shows the reduction of permeability as a function of DC bias. The distributed air gap of Kool Mμ results in a soft inductance versus DC bias curve. In most applications, this swinging inductance is desirable since it improves efficiency and accommodates a wide operating range. With a fixed current requirement, the soft inductance versus DC bias curve provides added protection against overload conditions. Figure 1 is plotted on a semi-log scale to show the DC bias characteristics at high currents.

Figure 1. DC magnetising force (Oersteds)
Figure 1. DC magnetising force (Oersteds)

Comparisons

With more than twice the flux capacity of ferrite, Kool Mμ offers significantly better DC bias characteristics. At a typical 50% roll-off, this can result in a 35% reduction in core size and a more robust design that utilises the soft saturation of Kool Mμ. The flux capacity difference is even more dramatic at high temperatures, since the flux capacity of ferrites decrease with temperature while Kool Mμ stays relatively constant.

Although high grade ferrite core losses are lower than Kool Mμ core losses, ferrite often requires low effective permeability to prevent saturation at high current levels. Ferrite, with its high initial permeability, requires a relatively large air gap to get a low effective permeability. This large air gap results in gap loss, a complex problem which is often overlooked when comparing material loss curves.

Kool Mμ offers similar DC bias characteristics when compared to powdered iron (pure Fe composition). Kool Mμ’s advantage over powdered iron is its lower core losses. In addition to withstanding a DC bias, switching regulator inductors see some AC current, typically at 10 kHz to 300 kHz. This AC current produces a high frequency magnetic field, which creates core losses and causes the core to heat up. As Figure 2 shows, Kool Mμ has lower core losses. Additionally, Kool Mμ has near zero magnetostriction, eliminating the audible noise associated with powdered iron cores, ferrite or silicon iron laminations when they are operated in the 20 Hz to 20 kHz range.

Figure 2. Typical core losses at 100 kHz
Figure 2. Typical core losses at 100 kHz

With a Curie temperature of approximately 500°C and rated for continuous operation from -65 up to +200°C, Kool Mμ also offers excellent performance over temperature.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

PCB connectors for power systems
Phoenix Contact Passive Components
With the new PC 6 PCB connectors with screw connection, Phoenix Contact’s classic connection technology is available with enhanced touch protection for the new pin connector pattern.

Read more...
Polymer caps with very high ripple current capability
RS South Africa Passive Components
TDK Corporation has released the B40910 series of hybrid polymer capacitors, which can handle up to 4,6 A at 100 kHz and 125°C.

Read more...
SPE connector range
Phoenix Contact Passive Components
Single Pair Ethernet (SPE) is a communication technology that realises Industry 4.0 and IIoT applications, and Phoenix Contact’s Combicon range are ideal for SPE connections.

Read more...
TDK expands MLCC series
RS South Africa Passive Components
TDK Corporation has expanded its CGA series of multilayer ceramic capacitors, currently being the highest capacitance in 100 V products for automotive applications.

Read more...
Inductor supports temperatures up to 150°C
RS South Africa Passive Components
TDK has launched a highly durable inductor for automotive A2B applications that supports a wide temperature range of -55 up to 150°C.

Read more...
Long-range passive infrared motion sensor
Future Electronics Passive Components
Panasonic Industry (PaPIRs) recently introduced he world’s most compact long-range passive infrared motion sensor, for installation heights of up to 15 metres.

Read more...
Isolated solid state relay
Altron Arrow Passive Components
The ISO808, ISO808-1 (PowerSO-36) and ISO808Q, ISO808Q-1 (TFQFPN32) are galvanic isolated eight-channel drivers featuring a low supply current.

Read more...
Low-profile power inductors
RS South Africa Passive Components
TDK Corporation has announced the introduction of its new PLEA85 series of high-efficiency power inductors developed for battery-powered wearables and other devices.

Read more...
Miniature capacitor for automotive applications
Avnet Abacus Passive Components
Murata has released its LLC series of multi-layer ceramic capacitors for automotive applications, that feature a reversed termination for low ESL.

Read more...
Sealed tantalum capacitors
Electrocomp Passive Components
With an operating temperature range of -55 to 125°C, with voltage derating, these capacitors have been designed especially for avionics and aerospace applications.

Read more...