Telecoms, Datacoms, Wireless, IoT


RFID-radar provides precision long range measurement

30 April 2008 Telecoms, Datacoms, Wireless, IoT

In August 2005, Trolley Scan developed a technology which allows an RFID system to not only identity the transponders, but also measure the distance of the transponder from the reader.

What is unique about this technology is that it has the ability to measure the distance travelled by the radio signal very accurately. In fact, as this article will show, accuracy of the system is better than one part in 40 000. The system can also measure the location of multiple transponders simultaneously and uses the same low cost passive and battery assisted transponders used in normal RFID readers.

The system uses the wavelength of the operating frequency of the signal travelling from the transponder to the reader as its 'yardstick'. The wavelength is based on a physical property, namely the speed at which radio waves travel, a value that is very accurately known. In fact the standard definition of the metre unit of length kept by ISO (International Standards Organisation) is defined in terms of wavelengths and the speed of light.

RFID-radar is a form of relatively low-cost RFID reader system and is commercially available. By attaching transponders to items, the RFID-radar is able to read the identity and positions of the transponders, effectively combining RFID and realtime locating systems (RTLS) in one device.

The system uses different types of transponders depending on required operating range.

Low cost passive transponders are used for short ranges (up to 13 metres) and long range battery assisted tags for ranges up to 40 metres.

The system currently has two levels of accuracy, namely 'absolute accuracy' which is currently about 0,5 metres, and 'relative accuracy' where the accuracy is approximately 1 millimetre. This article focuses on relative accuracy. In this mode, the system measures the changes in distance between the reader and the transponder very accurately.

Relative mode

Use of the system in relative mode allows small movements to be measured at long distances. Such uses might be to monitor movement of a bridge with traffic flow or temperature variation, the bulging of storage tanks with variations in storage content, bulging of a dam wall, slippage of a structure on a mountain with rainfall, movement of a structure in wind and similar situations.

A series of transponders would be attached to the structure, and the RFID-radar set up at a monitoring point some distance away. The radar would continually measure the distance from all of the transponders to the radar, reporting all the measurements once per second and giving approximately millimetre accuracy 24 hours per day.

Testing

To investigate the long term accuracy, a test was conducted using 24 500 measurements from seven transponders at different distances. The test collected all the data measured over one hour with each transponder being measured once per second. Different types of transponders were used, from passive credit card-sized types to battery assisted types. Table 1 shows the range of each transponder and its type, and the charts show the scatter for each situation.

Table 1. Different transponder types used for testing
Table 1. Different transponder types used for testing

Conclusion

RFID-radar is an effective solution to a difficult problem, namely measuring small movements at long distances, using affordable solutions. Because the transponders are very cheap, it is commercially practical to mount this equipment in permanent monitoring situations to collect data on a 24 hour basis and generate alarms should variations be out of tolerance.

For more information contact Mike Marsh, Trolley Scan, +27 (0)11 648 2087.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...
RF power amplifier
RF Design Telecoms, Datacoms, Wireless, IoT
The ZHL-20M2G7025X+ from Mini-Circuits is a 32 W power amplifier that operates from 20 to 2700 MHz and delivers a saturated output power of +45 dBm.

Read more...
Introducing the Quectel EG800Z series
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The EG800Z series is Quectel’s latest ultra-compact LTE Cat 1 bis module, designed to deliver reliable connectivity, low power consumption, and robust performance across a wide range of IoT applications.

Read more...
NeoMesh on LoRa
CST Electronics Telecoms, Datacoms, Wireless, IoT
Thomas Steen Halkier, CEO of NeoCortec, recently gave a keynote speech where he spoke about “NeoMesh on LoRa: Bringing true mesh networking to the LoRa PHY”.

Read more...
Modules upgraded with Direct-to-Cell tech
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced that several of its LTE modules are now available with Direct-to-Cell (D2C) functionality, enabling devices to seamlessly connect to satellite networks.

Read more...
USB/Ethernet smart RF power sensor
RF Design Telecoms, Datacoms, Wireless, IoT
The PWR-18PWHS-RC from Mini-Circuits is an RF power sensor that operates from 50 MHz to 18 GHz and is designed to capture pulsed and trace modulated signals with very high data resolution.

Read more...
Tiny Bluetooth LE + 802.15 + NFC module
RF Design Telecoms, Datacoms, Wireless, IoT
Unleashing enhanced processing power, expanded memory, and innovative peripherals, the BL54L15µ from Ezurio is the ultimate choice for small and low power connectivity.

Read more...
AI modules for edge intelligence
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom has introduced two new entry-level AI computing modules, the SIM8668 and SIM8666, designed to bring intelligent capabilities to lightweight, energy-efficient edge devices.

Read more...
High performance ISM antennas
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has announced the launch of two new high performance ISM antennas, designed to meet the need for wireless communication in devices that operate in the industrial and commercial applications.

Read more...
Quad-band high-precision positioning module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has recently announced the launch of the LG680P, a multi-constellation, quad-band GNSS module designed to deliver high-precision positioning across a wide range of applications.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved