mobile | classic
Dataweek Electronics & Communications Technology Magazine

Follow us on:
Follow us on Facebook Share via Twitter Share via LinkedIn


Electronics Buyers' Guide

Electronics Manufacturing & Production Handbook 2019


Protecting loudspeaker crossover networks
11 June 2008, Circuit & System Protection

Loudspeakers and amplifiers are manufactured by numerous companies building one or both of the systems.

Different design parameters cause impedance mismatching which can be damaging to speakers.

Over-current situations caused by overdriving power amps can damage the wirewound coils, causing shorts or opens in the copper windings of speaker components. Low power amps may act as clippers, causing a frequency shift or high frequency signals which can damage speakers, tweeters and constant directivity horns.

Another common failure mode is caused by taking a speaker from a zero state to a highly excited state in an extremely short period of time. The design of crossover networks concerns itself with the load seen from the amplifier. The initial internal resistance of the device is extremely small compared to the total impedance of a crossover circuit such as a Zobel network or conjugate impedance network.

The obvious solution is circuit protection using over-current protection devices. Two choices are fuses and circuit breakers. Circuit breakers can add undesirable distortion as the metal contacts separate. The electric field generated by the current flow resists the change in current, resulting in arcing and electrical white noise.

Fuses must be accessible and manually replaced. The cost of the fuse, fuse holder and access panel to the fuse makes typical fusing economically unattractive. Also, there is the possibility of mistakenly or intentionally over-rating the fuse, setting the system up for damage and violation of agency safety certifications. In crossover networks, a minimal number of components is used to protect the tweeter.

The obvious solution is to use an inexpensive resettable fuse that can be buried in the cabinet without needing maintenance or replacement.

A Multifuse PPTC from Bourns can be used in a parallel circuit with a large resistor (typically 10 kΩ) and this circuit is placed in series upstream of the speaker - see Figure 1.

Figure 1. PPTC protection with a parallel resistor
Figure 1. PPTC protection with a parallel resistor

During normal operation within the parameters of the tweeter, the PPTC acts as a conductor for the speaker. When an over-current situation such as an overdriven amp occurs, the polymer within the PPTC will expand and the carbon chains will disengage. This shunts all of the current through the shunt resistor, dropping the voltage across the resistor and protecting the speaker. Once the signal changes to a low value, the PPTC will begin to reset and the circuit will react as designed.

Another application is to use the PPTC without a shunt resistor - see Figure 2. As the PPTC's resistance increases exponentially, the speaker, horn or other delicate instrument will see little to no current flow.

Figure 2. PPTC protection without a parallel resistor
Figure 2. PPTC protection without a parallel resistor

The choice of PPTC depends upon the current demanded by the parameters of the speaker which the PPTC protects during normal operation. The Ihold of the PPTC is the amount of operational current desired in the design. The Itrip is the value at which the designer wishes to begin protecting the circuit, keeping in mind that the ambient temperature is an integral part of the circuit design when selecting the correct device.

Figure 2 shows a typical crossover network design, with typical values as follows:

C1: Ranges from 2 to 10 μF.

R1: Ranges from 2,7 to 22 Ω.

C2: Ranges from 2,2 to 4 μF.

L1: Ranges from 300 to 450 μH.

L2: Ranges from 0,7 μH to 2,5 mH.

C3: Ranges from 4,7 to 33 μF.

The input voltage can range up to 60 Volts continuous for newer speaker systems and about 53 Volts on older systems. Typical music peaks are a minimum of 12 db and normally 15 db. New woofers can handle 500 Watts while older styles are limited to 350 Watts. Tweeters fall into values of 60 Watts for new speakers, and 40 Watts for older speakers.

Supplied By: Avnet South Africa
Tel: +27 11 319 8600
Fax: +27 11 319 8650
  Share on Facebook Share via Twitter Share via LinkedIn    

Further reading:

  • Balancing performance, speed and cost for rugged interconnects
    25 September 2019, Avnet South Africa, Interconnection
    System designers want the smallest and lightest possible connectors for use in aerospace and military electronics, while industrial and transportation electronics are expected to deal with the same harsh environments at more competitive cost points.
  • EMI compliance testing vs. pre-compliance testing
    25 September 2019, Concilium Technologies, Circuit & System Protection
    Electromagnetic interference (EMI) is caused by unintentional emissions from electronic equipment. Compared to natural sources of EMI, such as lightning and solar storms, engineers are more concerned ...
  • Table-top instrument enclosures
    25 September 2019, Avnet South Africa, Enclosures, Racks, Cabinets & Panel Products
    The Evotec range of table-top plastic enclosures, made by OKW, is suitable for for tough working environments in applications such as measurement and control engineering, IT, medical, laboratory and environmental ...
  • Conductive rubber gaskets
    25 September 2019, Conical Technologies, Circuit & System Protection
    A range of conductive O-profile silicone rubber gaskets is available from Holland Shielding Systems, developed for high-performance shielding up to 18 GHz and used where environmental and EMI screening ...
  • High-temperature TVS MLVs
    25 September 2019, Future Electronics, Circuit & System Protection
    The new TransGuard VT Series multilayer varistors (MLV) made by AVX are rated for transient voltage suppression (TVS) applications operating at very high temperatures. They provide reliable, bidirectional ...
  • Test unit controls access to ESD protected areas
    25 September 2019, Altico Static Control Solutions, Circuit & System Protection
    In the electronics manufacturing industry, an electrostatic discharge (ESD) can cause irreparable damage to electronic components. This micro-lightning bolt can burn holes through insulating layers and ...
  • Qi-compliant wireless charging coils
    28 August 2019, Avnet South Africa, Passive Components
    Vishay has expanded its offering of Qi-compliant wireless charging transmitter and receiver coils with the introduction of 14 new products in industry-standard shield sizes. Consisting of eight single-coil ...
  • LED flicker, and how to prevent it
    28 August 2019, Avnet South Africa, Opto-Electronics
    With the growing popularity of LED lighting, especially now that very cheap LED luminaires are coming to the market, flicker is becoming more of a problem. Flicker, a repetitive switching on and off ...
  • 3 Watt DC-DC converters
    28 August 2019, Avnet South Africa, Power Electronics / Power Management
    Aimtec has introduced three new series of switching regulators – the AMSRB1-78JZ, AMSRL1-78JZ and AMSRL-78JZ – all meeting the EN62368 standard and suitable for IoT (Internet of Things) applications. The ...
  • EMI AC line filters for avionics
    31 July 2019, Conical Technologies, Circuit & System Protection
    Part of the AeroQor range, SynQor’s latest EMI AC line filters bring the company’s technology and manufacturing expertise to the avionics COTS component marketplace. The components’ packaging ensures ...
  • Conductive rubber gaskets
    31 July 2019, Conical Technologies, Circuit & System Protection
    A range of conductive O-profile silicone rubber gaskets is available from Holland Shielding Systems, developed for high-performance shielding up to 18 GHz and used where environmental and EMI screening ...
  • Buck converter with low quiescent current
    31 July 2019, Avnet South Africa, Power Electronics / Power Management
    Texas Instruments introduced an ultra-low-power switching regulator with what it claims is the industry’s lowest operating quiescent current (IQ) at 60 nA. The TPS62840 synchronous step-down converter ...

Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronics Buyers’ Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Terms & conditions of use, including privacy policy
PAIA Manual


    Classic | Mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.