Power Electronics / Power Management


Designing power supplies using fractional turn transformers

2 February 2011 Power Electronics / Power Management

Fractional turn transformers are not a new idea but it is not a concept that appears to have been applied to AC/DC power supplies in the past. For multiple-output power supplies, in particular, it offers some significant advantages in terms of saving space, cutting cost and improving efficiency.

The challenge comes when multiple outputs are required. In a power supply where 5 V and 12 V outputs are needed, it would be ideal to have the 5 V winding as a single turn on the transformer, but the 12 V winding then becomes 2,5 turns, which cannot be manufactured. One solution is to make the 5 V winding two turns, then 5 turns are needed for the 12 V winding. But the low-voltage, high-current 5 V winding has to carry the full rated load of that output, so it is made from thick copper foil, and the transformer has to become much larger if the number of turns is doubled.

In another common scenario, 5 V and 3,3 V outputs might be required. Normally, a regulator is used on the 5 V output to produce the 3,3 V rail. This lowers efficiency, eats up board space and adds costs.

In both cases, what is known as a fractional turn transformer solves a lot of problems. The term ‘fractional turn’ can be a little misleading because it is not a device with partial turns or tapped turns, both of which would unbalance the transformer, even if they could be implemented. Rather, it is a small transformer with a number of windings that connect to the secondary of the power transformer. The arrangement of these windings, shown in Figure 1, can be used to effectively add or subtract to the output voltage from the power transformer’s secondary, depending on the phase in which it is connected. For example, where 5 V and 3,3 V are needed, the power transformer can be designed so that a single turn secondary winding delivers 4,5 V.

Figure 1
Figure 1

The separate fractional turns transformer adds 0,5 V to deliver a 5 V output and subtracts 1,2 V to produce the 3,3 V output. This additional transformer can be very small because it handles very little low power due to the low voltage present across each winding.

Where a 12 V output it needed, the same power transformer can use a 3-turn secondary to produce 13,5 V at its output, with a small fractional turn transformer utilised to reduce this to 12 V. Of course, the magic is in how the fractional turn transformer is designed and connected, but the general principle is very well demonstrated in XP Power’s RCL175 family of compact, multi-output 175 W AC/DC switchers, an example of which is shown in Figure 2.

Figure 2
Figure 2

Here, customers can specify any voltage within the operating range of each output and the company delivers what is effectively a custom power supply simply by modifying the transformer arrangement. The power supplies have industrial, IT and medical approvals.

For more information contact Edwin Brown, Vepac Electronics, +27 (0)11 453 1910, [email protected], www.arrow.altech.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The role of bidirectional charging in the evolving energy landscape
Avnet Silica Power Electronics / Power Management
As reliance on renewable sources like wind and solar continues to grow, the need for efficient energy flow and storage solutions has become more critical than ever.

Read more...
SIGLENT launches new 8 GHz DSO
Vepac Electronics Test & Measurement
SIGLENT has unveiled the enhanced SDS7000A/AP models, building on the success of its SDS7000A high-resolution digital oscilloscope series.

Read more...
How to calculate a buck converter’s inductance
Power Electronics / Power Management
In the buck circuit, the inductor design is a key element that is closely related to system efficiency, the output voltage ripple, and loop stability.

Read more...
High-current EMI filters
Accutronics Power Electronics / Power Management
TDK has introduced 20 and 40 A, 80 V DC board-mount EMI filters, reducing differential mode conducted emissions for switching power supplies with high input current requirements.

Read more...
Isolated SMD DC-DC converters
iCorp Technologies Power Electronics / Power Management
MinMax has launched a series of isolated SMD DC-DC converters, the MSU01 series delivering 1 W, while the MSU02 series offers 2 W output.

Read more...
Mission-critical RF transceiver
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Iris SQN9506 from Sequans Communications is a wide-band RF transceiver that operates from 220 MHz to 7,125 GHz.

Read more...
Next-gen power meter
Electrocomp Express Power Electronics / Power Management
The VT-PWR-LV is a next-gen Vista Touch power meter from Trumeter for single, split, and three-phase systems.

Read more...
Smallest 13th gen Intel SBC
Vepac Electronics Computer/Embedded Technology
At just 86 x 55 mm, the de next-RAP8 continues AAEON’s run of producing record-breaking single-board computers with embedded Intel technology.

Read more...
Advanced PMIC for high-performance AI applications
ASIC Design Services Power Electronics / Power Management
Microchip Technology has announced the MCP16701, a Power Management Integrated Circuit (PMIC) designed to meet the needs of high-performance MPU and FPGA designers.

Read more...
New SiC power MOSFET
Future Electronics Power Electronics / Power Management
STMicroelectronics’ SCT012H90G3AG is a robust, automotive-grade SiC MOSFET, engineered for demanding power electronics, featuring a 900?V drain-source voltage and exceptionally low on-resistance of 12?mO at 60?A.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved